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Abstract. We discuss a novel approach to describe the evolution of a fireball, created
in a high-energy nuclear collision, experiencing spinodal instabilities due to the first-order
deconfinement phase transition of quantum chromo dynamics (QCD). We show that initial
density fluctuations in these collisions are enhanced in the mechanically unstable region of the
QCD phase diagram. In our study we find that the most favorable energy range for observing
these density enhancements is at the lower end of the SIS100 accelerator at FAIR, currently
under construction. Furthermore we discuss how one can distinguish and constrain different
types of QCD phase transitions, one of hadron-quark type and one of liquid-gas type, leading
to strong differences in the dynamical evolution of the QCD medium.

1. Introduction

Strongly interacting matter, in particular compressed baryonic matter, is expected to posses a
rich phase structure and may exhibit a first-order phase transition that persists up to a certain
critical temperature [1]. At vanishing baryon chemical potential, lattice QCD calculations
predict a smooth transformation from confined to deconfined matter at a cross-over temperature
of T× ≈ 150 - 160 MeV [2, 3]. Unfortunately, the lattice calculations cannot be extended to finite
chemical potential due to the so-called sign problem. It is therefore necessary to experimentally
determine the phase structure of baryon-rich strongly interacting matter. For such experimental
endeavors [4, 5, 6] to be successful, it is important to identify observables that may serve as
signals of the expected phase transition. Because the colliding system is relatively small, non-
uniform, far from global equilibrium, and rapidly evolving, the connection between experimental
observables and the idealized uniform equilibrium matter described by the equation of state are
obscured. Consequently it is important to carry out dynamical simulations of the collisions with
suitable transport models.

In a novel approach we perform numerical simulations with finite-density fluid dynamics,
using a previously developed two-phase equation of state and incorporating a gradient term
in the local pressure [7]. This latter refinement emulates the finite-range effects for a proper
description of the phase transition physics [8]. Thus we employ a transport model that treats
the associated physical instabilities in a numerically reliable manner.



2. A model for the phase transition

Figure 1. Density profile after 4 fm/c with a single UrQMD initial condition for Elab = 3A
GeV. While the initial fluctuations are not amplified in the case without an unstable region (left
figure), they are strongly amplified when an unstable region in the EoS is included (right figure).

For our present investigations, we describe the evolution of the colliding system by ideal
fluid dynamics. The basic equation of motion in ideal fluid dynamics expresses four-momentum
conservation, ∂µT

µ = 0, where the stress tensor is given by

Tµν(x) = [p(x) + ε(x)]uµ(x)uν(x)− p(x)gµν , (1)

where uµ(x) is the four-velocity of the fluid. When taking account of the baryon current
density,Nµ(x) = ρ(x)uµ(x), the basic equation of motion is supplemented by the continuity
equation, ∂µN

µ = 0. These equations of motion are solved by means of the code SHASTA [10]
in which the propagation in the three spatial dimensions is carried out consecutively.

In order to obtain a suitable equation of state, used as input to the fluid dynamical
simulations, we employ the method developed in Ref. [9]. For a given T , we obtain the free
energy density fT (ρ) in the phase coexistence region by performing a suitable spline between
two idealized systems (either a gas of pions and interacting nucleons or a bag of gluons and
quarks) held at that temperature. For each T the spline points were adjusted so the resulting
fT (ρ) would exhibit a concave anomaly, i.e. there would be two densities, ρ1(T ) and ρ2(T ), for
which the tangent of fT (ρ) would be common. This ensures phase coexistence because then the
chemical potentials µT = ∂ρfT (ρ) match, µT (ρ1) = µT (ρ2), as do the pressures, pT (ρ1) = pT (ρ2).
The resulting two-phase EoS (HQ-EoS) therefore exhibits a transition from a hadronic to a
deconfined quark phase.

As mentioned above, a proper description of spinodal decomposition requires that finite-range
effects be incorporated [8]. Therefore we write the local pressure as

p(r) = p0(ε(r), ρ(r))− a2εs
ρ(r)

ρs
∇

2 ρ(r)

ρs
, (2)

where we recall that p0(ε, ρ) is the equation of state, the pressure in uniform matter characterized
by ε and ρ. With ρs = 0.153/fm3 being the nuclear saturation density and εs ≈ mNρs the
associated energy density, the gradient term is normalized such that its strength is conveniently
governed by the length parameter a which was chosen to take the value a = 0.033 fm [11].

We have shown that our model produces both meaningful interface properties, including the
temperature-dependent strength of the associated tension, and reasonable spinodal growth rates,
including the emergence of an optimal phase separation scale [7]. The model is therefore suitable
for addressing dynamical scenarios involving phase-transition instabilities.
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Figure 2. Maximal enhancement of the fifth and seventh moments of the net baryon density
distributions as function of the beam energy Elab, for central collisions of Pb+Pb. We compare
a two phase equation of state including the effects of the spinodal instabilities (solid lines) with
a single phase equation of state (dashed lines) obtained via a Maxwell construction.

For a first study, we have considered central collisions of lead nuclei bombarded onto a
stationary lead target at various kinetic energies, Elab. For each energy, an ensemble of several
hundred separate evolutions are generated, each one starting from a different initial configuration
generated by (the cascade mode of) the UrQMD model [12, 13, 14] which treats the non-
equilibrium dynamics during the very early stage of the collision.

Figure 1 shows the effect of the spinodal instabilities on a single initial density profile, obtained
with UrQMD. Here the initial fluctuations are not amplified in the case without an unstable
region, they are strongly amplified when an unstable region in the EoS is included. When
considering an ensemble of many events, a convenient quantitative measure of the resulting
degree of “clumping” in the system is provided by the moments of the baryon density density
ρ(r),

〈ρN 〉 ≡
1

AN

∫
ρ(r)Nρ(r) d3r , (3)

where A =
∫
ρ(r)d3r = 〈ρ0〉 is the total (net) baryon number. The corresponding normalized

moments, 〈ρN 〉/〈ρ〉N , are dimensionless and increase with the order N , for a given density
distribution ρ(r); the normalized moment for N = 1 is unity.

Figure 2 shows the (ensemble average) maximum enhancement (for N = 5 and 7) achieved,
as a function of the beam energy for the two equations of state. The existence of an optimal
collision energy is clearly brought out. While the presently employed equation of state suggests
that this optimal range is Elab ≈ 2− 4AGeV, it should be recognized that others may lead to
different results.

3. The effect of the equation of state

As we pointed out, the effective EoS used in the dynamical simulations for the QCD phase
transition may have a strong impact on the resulting observable signals, as well as the optimal
collisional beam energy needed to see signals of the phase transition. In this section we will
discuss possible ways to qualitatively distinguish different types of phase transitions in QCD
and how they influence the dynamical evolution of nuclear collisions in the region of large
baryon densities, where the corresponding baryon-number chemical potential µ is of the order
of the temperature or higher.

Among the many effective models for QCD thermodynamics, those that couple constituent
quarks to mesonic fields and the Polyakov loop have become popular because they include chiral-
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Figure 3. Left: Pressure along the coexistence line for the two different equations of state
discussed in the text. Right: Time evolution of the fifth moment of the net baryon density for
the two different equations of state discussed in the text, and an initial state that locates the
bulk of the system within the unstable region of the phase diagram.

symmetry breaking and a ”thermal” confinement of quarks. Such approaches are the Polyakov
Nambu–Jona-Lasino (PNJL) [15, 16] and the Polyakov Quark-Meson (PQM) [17] models. These
models can be brought into agreement with lattice results at vanishing net baryon density but
their results for the finite-density domain depend significantly on the parameterizations used.
A particular weakness in most of these models is the absence of explicit hadronic degrees of
freedom in the confined phase. There exist only few examples where the equations of state
(EoS) includes an approximately realistic description of the hadronic phase. These equations of
states are constructed either by matching a purely hadronic model to an MIT-bag EoS or by
combining a PNJL/PQM-type model with a chiral hadronic model [18, 19]. Obviously, these
models need to be constrained both by lattice QCD results at zero and small chemical potential
and by known properties of nuclear matter at small temperatures and densities up to about twice
nuclear matter density [20], as well as by astrophysical observations on neutron star properties
[21].

It is instructive to consider the temperature dependence of the pseudo-critical pressure, ppc,
the pressure at which the phase transformation occurs for the different types of EoS. Figure 3
(left) shows the temperature dependent pseudo-critical pressure for the two models considered
here, the PQM model and the constructed Hadron-Quark EoS, as discussed in section 2. For a
specified temperature T , pHQ

pc is obtained by increasing the chemical potential µ until the ideal

hadron-gas and the quark-gluon bag have the same pressure, while pPQM
pc is taken as the pressure

along the inflection point of the chiral condensate [22]. While the resulting pseudo-critical
pressures are comparable at the highest temperatures (corresponding to µ ≈ 0), and consistent
with lattice results [2], they deviate strongly at large chemical potentials: As the temperature

is reduced, pHQ
pc increases steadily, as was already noted in previous studies employing models

that describe the hadron-quark transition [23, 24]. By contrast, pPQM
pc decreases steadily and

vanishes at T = 0, a behavior that is a robust feature of the PQM models and persists also in
the presence of a repulsive quark interaction [25, 26]. This generic liquid-gas behavior differs
qualitatively from the HQ result, for which the pressure decreases steadily with temperature.

We find that the PQM model shows a transition that is very similar to that of the liquid-
gas transition in nuclear matter and thus this model differs qualitatively from the HQ model
with regard to the thermodynamic properties near the phase coexistence line. The qualitative
differences between the two equations of state examined in this work lead to significant



quantitative differences in the time evolution of fireballs that expand through the respective
unstable region of the phase diagram. In dynamical simulations with the PQM model the
lifetime of quark clusters is orders of magnitude longer than what is usually expected for the
timescales of heavy-ion collisions and it predicts stable dense quark matter droplets at zero
temperature, i.e. coexisting with the vacuum [22]. In figure 3 (right) the time evolution of the
density moments for the two equations of state discussed above are shown. One can clearly
observe, that the moments drop rapidly in the case of the HQ EoS which has a large coexistence
pressure, while in the case of the PQM model the density clusters survive for a very long time
as they can only slowly decay in the vacuum.

4. Conclusion

In conclusion, we have obtained a transport model that is suitable for simulating nuclear
collisions in the presence of a first-order phase transition: it describes both the tension between
coexisting phases and the dynamics of the unstable spinodal modes. Applying this model to lead-
lead collisions, we have found that the associated instabilities may cause significant amplification
of initial density irregularities. Furthermore we have shown that qualitative differences between
the PQM and a HQ equations of state lead to considerable differences in the dynamical evolution
of the system. We believe that these qualitative differences persist independent of the specific
EoS model adopted but are rather characteristic for either a liquid-gas type or a more plausible
hadron-quark type transition.
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