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Abstract. As new radioactive-ion beam facilities are coming online there is an even growing
need for advanced experimental apparatuses that offer unprecedented resolution and efficiency
and can fully exploit the physics opportunities that open up in this new for the nuclear physics
community era. In this contribution state-of-the-art equipment and techniques for nuclear
physics experiments are presented.

1. Introduction

The study of the atomic nucleus dates more than a hundred years back, when early experiments
indicated that an atom has a small, central, dense and positively charged core. Since then, there
has been a tremendous progress in understanding the structure and properties of the atomic
nucleus. The vast majority of our knowledge originates from studies of a few hundred nuclei
at or near the valley of β stability. There is, however, an even larger number of nuclei that
are short lived (radioactive or exotic) and do not naturally occur on earth. It is only in the
last decades that the nuclear physics community gained access to this unknown territory of the
nuclear chart, which became available with the advent of radioactive-ion beam (RIB) facilities.
Recent major upgrades in the world’s most powerful facilities opens up the way for studies of
even more exotic systems and in much greater detail.

Some of the strongest motivations to extend our studies to the most exotic nuclear systems
include the fact that although they are not found on earth, they play an important role in
the cosmos as they are constantly created in stars. Furthermore, exotic nuclei provide a fertile
ground to study quantum phenomena such as clustering, quantum dots and phenomena unique to
weakly bound systems. Such phenomena are also important in other fields of physics today and
in many cases a universal description can be applied. Finally, major advances in many-body
theory result from investigations of nuclei with very different proton-to-neutron admixtures,
since certain parts of the nucleon-nucleon interaction are particularly sensitive to the proton-to-
neutron asymmetry.

2. Production of exotic nuclei

The two most popular methods to produce exotic nuclei are:

• the production at rest followed by Isotope-Separation-On-Line (ISOL-technique)

• the production and separation in flight using heavier ions (fragmentation technique)



In the fragmentation technique, a high-energy primary beam impinges on a production target
and gets fragmented. In this process many different nuclei are produced including some which
are very exotic – typically the cross-section for producing exotic nuclei falls rapidly as a function
of their distance from the stability line. These fragments are then flying in forward angles, due
to the high beam energy, and can be separated and identified through a magnetic spectrometer
(commonly referred to as fragment separator). The selected and identified species (constituting
the secondary beam) are then transported to the experimental halls where they are probed using
a secondary target. The primary beam intensity and the acceptance of the fragment separator
are two of the most important factors that determine the secondary beam intensity and thus
define how far exotic systems can be probed.

Some of the largest fragmentation facilities worldwide include the GSI/FAIR facility in
Germany, the NSCL/FRIB facility in the United States and the RIKEN/RIBF facility in Japan.
Recent or ongoing upgrades in these facilities enable studies of exotic systems which were not
feasible before. Besides the major upgrades in the production of the secondary beams, the
experimental apparatuses are also being significantly improved in terms of resolution, detection
efficiency and rate capability.

3. State-of-the-art experimental tools and techniques for nuclear structure studies

3.1. NUSTAR (Nuclear Structure and Astrophysics Research) at FAIR (Facility for Antiproton
and Ion Research)
The NUSTAR collaboration aims at exploring the structure and properties of the atomic nuclei
by exploiting the high-intensity radioactive-ion beams that will become available at FAIR.
The collaboration utilises different and complimentary ways to probe the nucleus. The main
experiments planned within the NUSTAR collaboration at FAIR are the following:

• Super-FRS (RIB production, identification and high-resolution spectroscopy),

• DESPEC (γ-, β-, α-, proton- and neutron-decay spectroscopy),

• HISPEC (in-beam γ-ray spectroscopy at low and intermediate energy),

• ILIMA (masses and lifetimes of nuclei in ground and isomeric states),

• LaSpec (laser spectroscopy),

• MATS (in-trap mass measurements and decay studies) and

• R3B (kinematically complete reactions at high beam energy),

which are currently being built in the first phase of the project and the experiments:

• ELISe (elastic, inelastic, and quasi-free e−A scattering) and

• EXL (light-ion scattering reactions in inverse kinematics),

which are foreseen in the second phase.
Some of the highlight physics questions that these experiments are aiming to address include:

• the changes in the nuclear structure as one moves away from the valley of stability; the
evolution of the single-particle structure and the onset of deformations will be probed as a
function of isospin,

• quantum phenomena that occur at extreme isospin values, such as neutron halos and
neutron skins,

• pin down components of the nuclear force that become more prominent as the neutron-to-
proton asymmetry increases,

• systematical studies of the collective response of exotic nuclei.

In the following section the R3B experiment is discussed in more detail.



3.2. The R3B (Reactions with Relativistic Radioactive Ion Beams) experiment
The strength of the R3B experiment is the kinematically complete measurement of reactions
with relativistic short-lived ions with energies of up to 1 AGeV. These rare radioactive isotopes
are produced at the beginning of the Superconducting Fragment Separator (Super-FRS) when
the high-energy primary beam is fragmented on the production target. The separator selects
and identifies on an event-by-event basis the ions of interest and measures their momentum to a
10−4 precision. The maximum beam rigidity that it can accept is 20 Tm. The R3B experiment
is planned at the high-energy branch of the Super-FRS.

The key constituents of the R3B setup, shown in Fig. 1, are:

• the large-acceptance superconductiong dipole magnet (GLAD). Its construction is
completed at CEA Saclay and will be installed in cave C at GSI with all its cryogenic
components beginning of 2015.

• The New Large Area Neutron Detector (NeuLAND). It is currently being built and 20% is
completed already.

• The silicon tracker (R3B-Si-Tracker). It has all components developed and is expected to
be fully completed by the end of 2015.

• The photon and particle calorimeter and spectrometer (CALIFA). It is under construction
with the goal to reach 20% in the year 2015.

• The in-beam tracking detectors for the heavy fragments and evaporated protons. It is under
construction with the goal to be completed in 2017.

For more details on these systems the reader is referred to the corresponding Technical Design
Report of each system [1, 2] and also to the R3B Technical Proposal [3]. Once the individual
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Figure 1. The R3B setup in its startup version with its main components: the silicon tracker
R3B-Si-TRACKER, the calorimeter CALIFA, the dipole magnet R3B-GLAD and the neutron
time-of-flight spectrometer NeuLAND.

detection systems are complete, the apparatus will be able to measure all particles emerging
from a reaction with high efficiency and resolution. A typical scenario would be as follows:
the high-energy (1 AGeV) radioactive-ion beam, which is selected and identified through the
fragment separator (Super-FRS), impinges on the secondary target and the beam-like fragments
are moving at small forward angles and fly through the large acceptance dipole magnet GLAD.
The trajectory and time of flight of the fragments is measured by the in-beam tracking detectors
before and after the dipole magnet to a precision that corresponds to about 10−3 momentum



resolution. The light charged particles that scatter at large angles are tracked precisely with the
finely segmented three-layer Si-R3B tracker. It is designed to offer, for example, precise tracking
and vertex reconstruction by detecting the two protons originating from a (p,2p) quasifree
scattering reaction (QFS). A total energy measurement of the target recoil charged particles is
performed in the CALIFA calorimeter. The γ rays emerging from the excited nuclei are also
measured by the CALIFA detector with very high efficiency due to its large geometrical coverage
and minimum dead layers between the crystals. Its high crystal granularity allows for a precise
Doppler correction; Doppler broadening is the dominant factor of the energy resolution at these
relativistic energies. An unbound daughter nucleus – either excited in the continuum or lie
beyond the neutron driplines – is likely to decay via neutron decay or evaporation. In this case,
the in-flight emitted neutrons fly at forward angles through the dipole magnet and hit a large
neutron time-of-flight wall (NeuLAND), where they are measured with very high efficiency. The
high granularity of the neutron detector allows also for high neutron multiplicity measurements,
which enables the study of very exotic systems and the poorly known multi-neutron correlations.
In particular, once fully built it will provide an unprecedented detection efficiency of more than
50% for four neutrons evaporated from a fast moving fragment.

These kinematically complete measurements enable a rich and versatile physics program:

• QFS reactions, in which a bound nucleon is knockout out at high momentum transfer, offer
a sensitive probe to study the single particle structure of exotic nuclei and also constitute
an effective way to populate unbound nuclei. For example, when starting from very neutron
rich nuclei as beam particles and knocking out a proton.

• Systematic studies of collective degrees of freedom in nuclei and their evolution towards
more exotic systems. For instance, the low-lying strength below the Giant Dipole Resonance
(GDR) identified as Pygmy Dipole Resonance (PDR), carries information about the neutron
skin thickness of nuclei, which in turn is used in calculations of the symmetry term coefficient
in the equation of state.

• The R3B setup will also be well suited to study total reaction cross section, as well as
total charge-changing and total neutron-removal cross sections. This information can be
associated to the nuclear and charge radii and the thickness of the neutron skin.

3.3. The high-resolution γ-ray tracking arrays
High resolution γ-ray spectroscopy has been and still is one of the most powerful ways to probe
the structure of the atomic nucleus. This is reflected in the tremendous improvement of the
γ-ray spectrometers over the last decades, in terms of resolution, efficiency, peak-to-total (P/T)
ratio and γ-ray multiplicity.

The Ge detectors with their unprecedented resolution are at the forefront of γ-ray
spectroscopy. One of the main limitations of the Ge detectors has been the relatively low
P/T ratio for a typical coaxial geometry Ge crystal, e.g. only about 1 out of 5 γ-rays of 1 MeV
energy that enter the crystal will deposit their full energy in this crystal. The rest of the γ rays
will deposit only part of their energy - mainly through single or multiple Compton scattering -
in the crystal, before escaping. These events generate a significant background at lower energies
in the crystal’s energy spectrum. The identification of other smaller energy γ rays is hindered by
this background. For low γ-ray multiplicity events a solution to increase the P/T ratio is to pack
several crystals next to each other in a clover geometry. However, for high multiplicity events
this solution is not ideal. A very effective solution to increase the P/T ratio, which has been
used in the past decades, is to Compton-shield the Ge crystal with fast scintillator detectors
that veto the escaping γ rays. Combining many of such Compton-suppressed modules full four-π
arrays have been built. These arrays have been used very successfully over the past two decades
and have served a broad physics program with an important impact for nuclear physics.



The use of the suppression shields, however, limits the solid angle that can be covered by
Ge detectors and thus limits the efficiency of the array. A pioneering solution to maintain the
good P/T ratio offered by the Compton suppression and at the same time increase the efficiency
is γ-ray tracking (see for example Ref. [4]). Instead of tagging on the escaping γ rays using
Compton shields, one can fill the full four-π solid angle with Ge detectors and track the γ rays
that scatter into the neighbouring crystal. In this way, the full γ-ray energy can be reconstructed
and both the efficiency and the P/T ratio of the array improve drastically. Two such arrays
have been specifically designed and built as γ-ray energy tracking arrays over the past decade:
the GRETINA [5] and the AGATA [6] arrays. Both arrays cover a one π of the full solid angle
and have been successfully completed. In the last couple of years they have started serving the
nuclear physics community around the world.

Gamma-ray tracking uses the Compton relation to group and order the individual γ ray
interaction positions inside the crystals for each γ ray. In order to perform γ ray tracking,
it is required to know precisely the coordinates of each γ ray interaction position and the
deposited energy in this position. In the 3D volume of large coaxial detectors with high
electrical segmentation this can be achieved by recording the pulse shapes of the signals that
are generated as the charge drifts towards the electrodes. The rise time of the signal depends
on the drift distance between the segment (or central contact) electrode and the interaction
position. In addition, the neighbouring segments see an image charge of opposite polarity
during the drift of the charge in the hit segment. The magnitude of the image charge is
related to the distance between this segment and the hit position inside the segment where
the interaction occurred. In reality, the final signal shapes that the electrodes record for each
event become rather complicated as they are folded with cross-talk effects, multiple interactions
inside one segment, electronic shaping and noise. The event-by-event on-line reconstruction
of the interaction positions is performed by comparison of the measured pulse shapes with a
basis of simulated pulses. This is a computationally intense task and such arrays are coupled to
dedicated computer farms that perform the reconstruction in real time.

4. Summary

The high-intensity radioactive-ion beams from the upgraded accelerator facilities coupled to the
state-of-the-art experimental tools and techniques that are currently being developed open up
the way for the nuclear physics community to explore the structure and properties of exotic
nuclei that were not accessible so far. The FAIR facility and the NUSTAR experiments will play
a leading role in these investigations.

References
[1] Technical Design Report of CALIFA Barrel: The R3B CALorimeter for In Flight detection of γ rays and high

energy charged pArticles (2011)
http://www.fair-center.eu/fileadmin/fair/publications\_exp/CALIFA\_BARREL\_TDR\_web.pdf

[2] Technical Design Report of NeuLAND: The High-Resolution Neutron Time-of-Flight Spectrometer for R3B
(2011)
http://www.fair-center.de/fileadmin/fair/experiments/NUSTAR/Pdf/TDRs/NeuLAND-TDR-Web.pdf

[3] Technical Proposal for the Design, Construction, Commissioning and Operation of R3B (2005)
http://www.gsi.de/onTEAM/grafik/1130224398/13-PROP-R3B-TP-07Dez2005.pdf

[4] M. A. Deleplanque, et al., Nucl. Instr. Meth. A 430 (1999) 292 – 310.
[5] S.Paschalis, et al., Nucl. Instr. Meth. A 709 (2013) 44 – 55.
[6] S. Akkoyun, et al., Nucl. Instr. Meth. A 668 (2012) 26 – 58.


