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Abstract. We calculated antibaryon (B̄ = p̄, Λ̄, Σ̄, Ξ̄) bound states in selected nuclei
within the relativistic mean-field (RMF) model. The G-parity motivated B̄–meson coupling
constants were scaled to yield corresponding potentials consistent with available experimental
data. Large polarization of the nuclear core caused by B̄ was confirmed. The p̄ annihilation
in the nuclear medium was incorporated by including a phenomenological imaginary part of
the optical potential. The calculations using a complex p̄–nucleus potential were performed
fully self-consistently. The p̄ widths significantly decrease when the phase space reduction is
considered for p̄ annihilation products, but they still remain sizeable for potentials consistent
with p̄–atom data.

1. Introduction
The study of antibaryon–nucleus interactions has attracted increasing interest in recent years
at the prospect of future experiments at the FAIR facility [1]. In particular, much attention has
been devoted to the antiproton–nucleus interaction and the possibility of formation of p̄–nucleus
bound states [2, 3, 4]. Exploring the p̄–nucleus interaction could provide valuable information
about the behavior of the antiproton in the nuclear medium as well as nuclear dynamics. One of
the motivations for our study of p̄–nucleus bound states is the conjecture that the considerable
suppression of the phase space for the p̄ annihilation products in the nuclear medium could lead
to relatively long living p̄ inside the nucleus [2].

In this contribution, we report on our recent fully self-consistent calculations of antibaryon–
nucleus bound states within the relativistic mean-field model [5]. The behavior of an antibaryon
in the nuclear medium and the dynamical effects caused by the presence of the antibaryon in the
nucleus were studied for several selected nuclei. Special attention was devoted to the p̄–nucleus
interaction including p̄ absorption in the nucleus.

In Section 2, a brief description of the underlying model is given. Few representative results
of our calculations are presented and discussed in Section 3.

2. Model
In the present work, antibaryon–nucleus bound states are studied within the framework of the
RMF approach applied to a system of nucleons and one antibaryon (B̄ = p̄, Λ̄, Σ̄, Ξ̄). The
interaction among (anti)baryons is mediated by the exchange of the scalar (σ) and vector (ωµ,
~ρµ) meson fields, and the massless photon field Aµ. The standard Lagrangian density LN for
nucleonic sector is extended by the Lagrangian density LB̄ describing the antibaryon interaction



with the nuclear medium (see ref. [6] for details). The variational principle yields the equations
of motion for the hadron fields involved. The Dirac equations for nucleons and antibaryon read:

[−i~α~∇+ β(mj + Sj) + Vj ]ψ
α
j = εαj ψ

α
j , j = N, B̄ , (1)

where

Sj = gσjσ, Vj = gωjω0 + gρjρ0τ3 + ej
1 + τ3

2
A0 (2)

are the scalar and vector potentials. Here, α denotes single particle states, mj stands
for (anti)baryon masses and gσj , gωj , gρj , and ej are (anti)baryon coupling constants to
corresponding fields. The presence of B̄ induces additional source terms in the Klein–Gordon
equations for the meson fields:

(−4+m2
σ + g2σ + g3σ

2)σ = −gσNρSN − gσB̄ρSB̄
(−4+m2

ω + dω2
0)ω0 = gωNρV N + gωB̄ρV B̄

(−4+m2
ρ)ρ0 = gρNρIN + gρB̄ρIB̄

−4A0 = eNρQN + eB̄ρQB̄ ,

(3)

where ρSj , ρVj , ρIj and ρQj are the scalar, vector, isovector and charge densities, respectively, and
mσ,mω,mρ are the masses of considered mesons. The system of coupled Dirac (1) and Klein–
Gordon (3) equations represents a self-consistent problem which is to be solved by iterative
procedure.

The values of the nucleon–meson coupling constants and meson masses were adopted from the
nonlinear RMF model TM1(2) [7] for heavy (light) nuclei. We used also the density–dependent
model TW99 [8, 9] in which the couplings are a function of the baryon density. The hyperon–
meson coupling constants for the ω and ρ fields are obtained using SU(6) symmetry relations.
The coupling constants for the σ field are constrained by available experimental data — Λ
hypernuclei [10], Σ atoms [11], and Ξ production in (K+,K−) reaction [12].

In the RMF approach, the nuclear ground state is well described by the attractive scalar
potential S ' −350 MeV and by the repulsive vector potential V ' 300 MeV. The resulting
central potential acting on a nucleon in a nucleus is then approximately S + V ' −50 MeV
deep. The B̄–nucleus interaction is constructed from the B–nucleus interaction with the help
of the G-parity transformation: the vector potential generated by the ω meson exchange thus
changes its sign and becomes attractive. As a consequence, the total potential acting on a B̄
will be strongly attractive. In particular, the p̄–nuclear potential would be S − V ' −650 MeV
deep. However, the G-parity transformation should be regarded as a mere starting point to
determine the B̄–meson coupling constants. Various many-body effects, as well as the presence
of strong annihilation channels could cause significant deviations from the G-parity values in
the nuclear medium. Indeed, the available experimental data from p̄ atoms [13] and p̄ scattering
off nuclei [14] suggest that the depth of the real part of the p̄–nucleus potential is in the range
−(100 − 300) MeV in the nuclear interior. Therefore, we introduce a scaling factor ξ ∈ 〈0, 1〉
for the antibaryon–meson coupling constants which are in the following relation to the baryon–
meson couplings:

gσB̄ = ξ gσN , gωB̄ = −ξ gωN , gρB̄ = ξ gρN . (4)

The annihilation of an antibaryon inside the nuclear medium is an inseparable part of any
realistic description of the B̄–nucleus interaction. In our calculations, only the p̄ absorption in
the nucleus has been considered so far. Since the RMF model does not address directly the
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Figure 1. The phase space suppression factors fs as a function of the c.m. energy
√
s.

absorption of the p̄ in the nucleus we adopted the imaginary part of the optical potential in a
‘tρ’ form from optical model phenomenology [13]:

2µImVopt(r) = −4π

(
1 +

µ

mN

A− 1

A

)
Imb0ρ(r) , (5)

where µ is the p̄–nucleus reduced mass. While the density ρ was treated as a dynamical quantity
determined within the RMF model, the parameter b0 was constrained by fits to p̄-atomic data
[13]. The global fits to the p̄-atomic data give a single value for the imaginary part of b0,
Imb0 = 1.9 fm for all nuclei considered.

The energy available for the p̄ annihilation in the nuclear medium is usually expressed as√
s = mp̄+mN −Bp̄−BN , where Bp̄ and BN is the p̄ and nucleon binding energy, respectively.

Therefore, the phase space available for the annihilation products is considerably suppressed for
the deeply bound antiproton.

The phase space suppression factors (fs) for two body decay are given by [15]

fs =
M2

s

√
[s− (m1 +m2)2][s− (m1 −m2)2]

[M2 − (m1 +m2)][M2 − (m1 −m2)2]
Θ(
√
s−m1 −m2) , (6)

where m1, m2 are the masses of the annihilation products and M = mp̄ +mN .
For channels containing more than 2 particles in the final state the suppression factors

fs were evaluated with the help of Monte Carlo simulation tool PLUTO [16]. In Figure 1,
we present the phase space suppression factors as a function of the center-of-mass energy√
s for considered annihilation channels. As the energy

√
s decreases many channels become

significantly suppressed or even closed which could lead to much longer lifetime of p̄ in a nucleus.

3. Results
We applied the formalism introduced in the previous section to self-consistent calculations of
p̄, Λ̄, Σ̄, Ξ̄ bound states in selected nuclei across the periodic table. First, we did not consider
absorption of an antibaryon in a nucleus. Our calculations within the TM model confirmed
substantial polarization of the nuclear core caused by the antibaryon embedded in the nucleus [2].
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Figure 2. The B–nucleus (a) and B̄–nucleus
(b) potentials in 16O, calculated dynamically for
ξ = 0.2 in the TM2 model.
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Figure 3. Single particle energies of Ξ− and
Ξ̄+ for ξ = 0.2 in various nuclei, calculated
dynamically in the TM model.

The nucleon single particle energies are significantly affected by the presence of B̄ and the total
binding energies increase considerably, as well. The nucleon densities in p̄ nuclei reach 2 − 3
times the nuclear matter density. The RMF models with constant couplings do not have to
describe correctly the properties of nuclear matter when extrapolated to such high densities.
Therefore, we performed calculations of p̄ nuclei within the density–dependent model TW99,
as well. We obtained very similar results as for the TM model and thus confirmed only small
model dependence of our calculations.

Figure 2 shows the total potential acting on an extra baryon (a) and on an extra antibaryon
(b) in 1s state in 16O, calculated dynamically in the TM2 model. The scaling parameter is chosen
to be ξ = 0.2 as this value gives the p̄ potential comparable with the available experimental
data. We assume the same scaling parameter also for antihyperons, since there is no reliable
experimental information on the in-medium antihyperon potentials. The potentials acting on
antibaryons are fairly deep in the central region of the nucleus in contrast to the baryon potentials
(notice that the potential for Σ0 is even repulsive while the potential for Σ̄0 is strongly attractive).
Such strongly attractive potentials yield deeply bound states of antibaryons in atomic nuclei.

Figure 3 presents a comparison between the Ξ− and Ξ̄+ 1s single particle energies in various
nuclei across the periodic table, calculated dynamically in the TM model. The Ξ̄+ coupling
constants are scaled by factor ξ = 0.2. The binding energy of Ξ− is increasing with the number
of nucleons in the nucleus. The Ξ̄+ binding energy follows the opposite trend and in Pb it is
even less bound than Ξ−. This can be explained by enhanced Coulomb repulsion felt by Ξ̄+ in
heavier nuclei.

We performed calculations of p̄ nuclei using a complex potential describing the p̄ annihilation
in the nuclear medium. The results of static as well as dynamical calculations with the real
potential, complex potential, and complex potential with the suppression factors fs for p̄ bound
in 16O are presented in Table 1. The scaling of the p̄–meson coupling constants is chosen to
be ξ = 0.2. The static calculations, which do not account for the core polarization effects, give
approximately the same values of the p̄ single particle energy for all three cases. The single
particle energies calculated dynamically are larger, which indicates that the polarization of the



Table 1. The 1s single particle energies Ep̄ and widths Γp̄ (in MeV) in 16Op̄, calculated
dynamically (Dyn) and statically (Stat) with the real, complex and complex with fs potentials
(TM2 model), consistent with p̄–atom data.

Real Complex Complex + fs

Dyn Stat Dyn Stat Dyn Stat

Ep̄ 193.7 137.1 175.6 134.6 190.2 136.1
Γp̄ - - 552.3 293.3 232.5 165.0

core nucleus is significant (even if the p̄ absorption is taken into account). When the effect of
the phase space suppression is considered the p̄ annihilation width is substantially suppressed
(compare 552.3 MeV vs. 232.5 MeV in the last row of Table 1). However, the p̄ width is still
considerable for relevant p̄ potentials consistent with the p̄ data.

The annihilation of the p̄ with a nucleon takes place in a nucleus. Therefore, the momentum
dependent term in Mandelstam variable s = (EN +Ep̄)

2−(~pN +~pp̄)
2 is non-negligible in contrast

to two body frame [17]. Our self-consistent evaluation of
√
s by considering the momenta of

annihilating partners leads to an additional downward energy shift. As a consequence, the p̄
width in 16Op̄ is reduced by additional ≈ 50 MeV. We conclude that even after taking into
account the phase space suppression corresponding to self-consistent treatment of

√
s including

the p̄ and N momenta, the p̄ annihilation widths in nuclei remain sizeable. The corresponding
lifetime of the p̄ in the nuclear medium is ' 1 fm/c.
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