# Investigations of the QCD Phase Diagram with Dyson-Schwinger Equations

Christian A. Welzbacher

Institut für Theoretische Physik - Justus-Liebig-Universität Giessen

Fairness 2014, Vietri sul Mare

Phys.Rev. D90 (2014) 034022

C. S. Fischer, J. Luecker, CAW

# Outline

### Introduction

- 2 Tools and toys
- 3 Current status and results
- 4 Conclusion and outlook



- 2 Tools and toys
- 3 Current status and results
- 4 Conclusion and outlook

# *"In the beginning there was nothing, which exploded"*

(Sir Terry Pratchett)



- Various sketches (choose your favorite one!)
- Various interesting features (Big Bang, neutron stars, different phases and transitions)
- Various attempts to pin down (lattice QCD, models, functional approaches)



- Various sketches (choose your favorite one!)
- Various interesting features (Big Bang, neutron stars, different phases and transitions)
- Various attempts to pin down (lattice QCD, models, functional approaches)



- Various sketches (choose your favorite one!)
- Various interesting features (Big Bang, neutron stars, different phases and transitions)
- Various attempts to pin down (lattice QCD, models, functional approaches)



- Various sketches (choose your favorite one!)
- Various interesting features (Big Bang, neutron stars, different phases and transitions)
- Various attempts to pin down (lattice QCD, models, functional approaches)

#### Whats up? Interesting aspects of the QCD phase diagram:



- Location and existence of critical end point (CEP)
- Chiral and deconfinement transitions
- Impact of charm quark

#### Whats up? Interesting aspects of the QCD phase diagram:



- Location and existence of critical end point (CEP)
- Chiral and deconfinement transitions
- Impact of charm quark

#### Whats up? Interesting aspects of the QCD phase diagram:



- Location and existence of critical end point (CEP)
- Chiral and deconfinement transitions
- Impact of charm quark

# How to get there?

#### • Perturbation theory / Hard-Thermal loops

- Valid only for high temperatures
- Non-perturbative effects become important

# How to get there?

#### Perturbation theory / Hard-Thermal loops

- Valid only for high temperatures
- Non-perturbative effects become important
- $\bullet~$  Lattice QCD  $\rightarrow~$  Talk from Anthony Francis (vacuum)
  - Ab-initio
  - Only for small  $\mu/T$  (sign feature/problem)

# How to get there?

#### Perturbation theory / Hard-Thermal loops

- Valid only for high temperatures
- Non-perturbative effects become important
- Lattice QCD  $\rightarrow$  Talk from Anthony Francis (vacuum)
  - Ab-initio
  - Only for small  $\mu/T$  (sign feature/problem)
- Effective field theories  $\rightarrow$  Talk from Peter Kovacs
  - No sign problem
  - Effective degress of freedom

# How to get there?

#### Perturbation theory / Hard-Thermal loops

- Valid only for high temperatures
- Non-perturbative effects become important
- Lattice QCD  $\rightarrow$  Talk from Anthony Francis (vacuum)
  - Ab-initio
  - Only for small  $\mu/T$  (sign feature/problem)
- Effective field theories  $\rightarrow$  Talk from Peter Kovacs
  - No sign problem
  - Effective degress of freedom
- Functional approaches:
  - No sign problem
  - QCD degrees of freedom
  - Truncation needed
  - $\rightarrow$  Dyson-Schwinger equations (DSEs)

#### What are Dyson-Schwinger equations?



Christian A. Welzbacher (JLU Giessen)

QCD phase diagramm with DSEs

# An infinite tower of coupled integral equations?





Christian A. Welzbacher (JLU Giessen)

QCD phase diagramm with DSEs

Fairness2014 (Vietri sul Mare)



 $N_f=2$ 

Up and down quark (2011, 2012)

Christian A. Welzbacher (JLU Giessen)

QCD phase diagramm with DSEs

Fairness2014 (Vietri sul Mare)





# Outline

#### Introduction

#### Tools and toys

- Quark DSE in hot and dense matter
- Gluon propagator and gluon DSE
- Quark-gluon vertex
- Chiral condensate
- Polyakov loop
- 3 Current status and results
- 4 Conclusion and outlook

# Quark propagator in hot and dense matter

Bare quark propagator (vacuum)

$$S_0^{-1}(p) = ip_\mu \gamma^\mu + m_0$$

Bare quark propagator (finite T,  $\mu$ )

$$S_0^{-1}(p) = i\vec{p}\vec{\gamma} + i(\omega_n + i\mu)\gamma_4 + m_0$$

Dressed quark propagator (finite T, 
$$\mu$$
)

$$S^{-1}(p) = i\vec{p}\vec{\gamma}A(p) + i(\omega_n + i\mu)\gamma_4C(p) + B(p)$$

Christian A. Welzbacher (JLU Giessen)

QCD phase diagramm with DSEs

Fairness2014 (Vietri sul Mare)





- Coupled integral equation
- Base of infinite tower of equations
- Selfconsistently calculate dressing functions A(p), B(p) and C(p)
- Depends (directly) on:
  - Full quark-gluon vertex
  - Fully dressed gluon propagator



#### Coupled integral equation

- Base of infinite tower of equations
- Selfconsistently calculate dressing functions A(p), B(p) and C(p)

#### • Depends (directly) on:

- Full quark-gluon vertex
- Fully dressed gluon propagator



- Coupled integral equation
- Base of infinite tower of equations
- Selfconsistently calculate dressing functions A(p), B(p) and C(p)
- Depends (directly) on:
  - Full quark-gluon vertex
  - Fully dressed gluon propagator



- Coupled integral equation
- Base of infinite tower of equations
- Selfconsistently calculate dressing functions A(p), B(p) and C(p)
- Depends (directly) on:
  - Full quark-gluon vertex
  - Fully dressed gluon propagator



- Coupled integral equation
- Base of infinite tower of equations
- Selfconsistently calculate dressing functions A(p), B(p) and C(p)
- Depends (directly) on:
  - Full quark-gluon vertex
  - 2 Fully dressed gluon propagator



- Coupled integral equation
- Base of infinite tower of equations
- Selfconsistently calculate dressing functions A(p), B(p) and C(p)
- Depends (directly) on:
  - Full quark-gluon vertex
    - Fully dressed gluon propagator



- Coupled integral equation
- Base of infinite tower of equations
- Selfconsistently calculate dressing functions A(p), B(p) and C(p)
- Depends (directly) on:
  - Full quark-gluon vertex
  - Pully dressed gluon propagator

Dressed gluon propagator at finite T ( and 
$$\mu$$
)  

$$D_{\mu\nu}(p) = P_{\mu\nu}^{L}(p) \frac{Z^{L}(p)}{p^{2}} + P_{\mu\nu}^{T}(p) \frac{Z^{T}(p)}{p^{2}}$$

Finite temperature gluon fully determined by dressing functions  $Z^{L}(p)$ and  $Z^{T}(p)$ 

Christian A. Welzbacher (JLU Giessen) QCD phase diagramm with DSEs

Fairness2014 (Vietri sul Mare)



- Use input from lattice QCD for quenched gluon propagator  $D^{que.}_{\mu\nu}(p)$
- Calculate quark loop for each flavor
- Quenched gluon propagator from C.F. Fischer et al., Eur. Phys. J.C. 68, 165 (2010)

$$\Gamma_{\mu}(l, \boldsymbol{p}; \boldsymbol{q}) = \gamma_{\mu} \cdot \Gamma_{[\boldsymbol{d}_{1}]}(l^{2}, \boldsymbol{p}^{2}, \boldsymbol{q}^{2}) \cdot \left(\delta_{\mu, 4} \frac{C(l) + C(\boldsymbol{p})}{2} + \delta_{\mu, i} \frac{A(l) + A(\boldsymbol{p})}{2}\right)$$

- Designed along symmetries and constraints
- Depends on temperature, chemical potential and quark flavor via first term of the Ball-Chiu vertex
- Vertex dressing function depends on parameter d₁ (interaction strength at small momenta)
   → d₁ becomes important when including the charm quark

$$\Gamma_{\mu}(I,\boldsymbol{p};\boldsymbol{q}) = \gamma_{\mu} \cdot \Gamma_{[\boldsymbol{d}_{1}]}(I^{2},\boldsymbol{p}^{2},\boldsymbol{q}^{2}) \cdot \left(\delta_{\mu,4}\frac{C(I)+C(\boldsymbol{p})}{2} + \delta_{\mu,i}\frac{A(I)+A(\boldsymbol{p})}{2}\right)$$

#### Designed along symmetries and constraints

- Depends on temperature, chemical potential and quark flavor via first term of the Ball-Chiu vertex
- Vertex dressing function depends on parameter d₁ (interaction strength at small momenta)
   → d₁ becomes important when including the charm quark

$$\Gamma_{\mu}(l,\boldsymbol{p};\boldsymbol{q}) = \gamma_{\mu} \cdot \Gamma_{[\boldsymbol{d}_{1}]}(l^{2},\boldsymbol{p}^{2},\boldsymbol{q}^{2}) \cdot \left(\delta_{\mu,4}\frac{C(l)+C(\boldsymbol{p})}{2} + \delta_{\mu,i}\frac{A(l)+A(\boldsymbol{p})}{2}\right)$$

- Designed along symmetries and constraints
- Depends on temperature, chemical potential and quark flavor via first term of the Ball-Chiu vertex
- Vertex dressing function depends on parameter d₁ (interaction strength at small momenta)
   → d₁ becomes important when including the charm quark

$$\Gamma_{\mu}(l, \boldsymbol{p}; \boldsymbol{q}) = \gamma_{\mu} \cdot \Gamma_{[\boldsymbol{d}_{1}]}(l^{2}, \boldsymbol{p}^{2}, \boldsymbol{q}^{2}) \cdot \left(\delta_{\mu, 4} \frac{C(l) + C(\boldsymbol{p})}{2} + \delta_{\mu, i} \frac{A(l) + A(\boldsymbol{p})}{2}\right)$$

- Designed along symmetries and constraints
- Depends on temperature, chemical potential and quark flavor via first term of the Ball-Chiu vertex
- Vertex dressing function depends on parameter d₁ (interaction strength at small momenta)
   → d₁ becomes important when including the charm quark

#### Quark condensate

$$egin{aligned} &\langle ar{\psi}\psi 
angle_f &\propto &\int \mathrm{Tr}_D\left[ \mathcal{S}^f(\mathbf{p}) 
ight] \ &pprox & \mathbf{c}(\mathcal{T},\mu) + \mathbf{m}_0^f \cdot \Lambda^2 \end{aligned}$$

Regularized condensate  

$$\Delta_{l,s} = \langle \bar{\psi}\psi \rangle_l - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_s$$

- Order paramter for chiral symmetry (exact in chiral limit)
- There are different ways to extract (different) *T<sub>C</sub>* for crossover, we use:
  - Maximum of chiral susceptibility:  $\frac{\partial \langle \bar{\psi} \psi \rangle}{\partial m}$
  - Inflection point of chiral condensate:  $\frac{\partial (\bar{\psi}\psi)}{\partial T}$

#### Quark condensate

$$egin{aligned} &\langle ar{\psi}\psi 
angle_f &\propto &\int \mathrm{Tr}_D\left[ oldsymbol{S}^f(oldsymbol{p}) 
ight] \ &pprox & oldsymbol{c}(T,\mu) + m_0^f \cdot \Lambda^2 \end{aligned}$$

Regularized condensate  

$$\Delta_{l,s} = \langle \bar{\psi}\psi \rangle_l - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_s$$

- Order paramter for chiral symmetry (exact in chiral limit)
- There are different ways to extract (different) *T<sub>C</sub>* for crossover, we use:
  - Maximum of chiral susceptibility: <a href="https://doi.org/10.1016/j.jpg">doi:10.1016/j.jpg</a>
  - Inflection point of chiral condensate:  $\frac{\partial \langle \bar{\psi} \psi \rangle}{\partial T}$

#### Quark condensate

$$egin{aligned} &\langle ar{\psi}\psi 
angle_f &\propto &\int \mathrm{Tr}_D\left[ oldsymbol{S}^f(oldsymbol{p}) 
ight] \ &pprox & oldsymbol{c}(T,\mu) + m_0^f \cdot \Lambda^2 \end{aligned}$$

Regularized condensate  

$$\Delta_{l,s} = \langle \bar{\psi}\psi \rangle_l - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_s$$

- Order paramter for chiral symmetry (exact in chiral limit)
- There are different ways to extract (different) *T<sub>C</sub>* for crossover, we use:

Christian A. Welzbacher (JLU Giessen)

#### Quark condensate

$$egin{aligned} &\langle ar{\psi}\psi 
angle_f &\propto &\int \mathrm{Tr}_D\left[ oldsymbol{S}^f(oldsymbol{p}) 
ight] \ &pprox & oldsymbol{c}(T,\mu) + m_0^f \cdot \Lambda^2 \end{aligned}$$

Regularized condensate  

$$\Delta_{l,s} = \langle \bar{\psi}\psi \rangle_l - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_s$$

- Order paramter for chiral symmetry (exact in chiral limit)
- There are different ways to extract (different) *T<sub>C</sub>* for crossover, we use:
  - Maximum of chiral susceptibility:  $\frac{\partial \langle \bar{\psi}\psi \rangle}{\partial m}$
  - 2 Inflection point of chiral condensate:  $\frac{\partial \langle \bar{\psi}\psi \rangle}{\partial T}$

#### Quark condensate

$$egin{aligned} &\langle ar{\psi}\psi 
angle_f &\propto &\int \mathrm{Tr}_D\left[ oldsymbol{S}^f(oldsymbol{p}) 
ight] \ &pprox & oldsymbol{c}(T,\mu) + m_0^f \cdot \Lambda^2 \end{aligned}$$

Regularized condensate  

$$\Delta_{l,s} = \langle \bar{\psi}\psi \rangle_l - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_s$$

- Order paramter for chiral symmetry (exact in chiral limit)
- There are different ways to extract (different) *T<sub>C</sub>* for crossover, we use:
  - Maximum of chiral susceptibility:  $\frac{\partial \langle \bar{\psi}\psi \rangle}{\partial m}$
  - 2 Inflection point of chiral condensate:  $\frac{\partial \langle \bar{\psi}\psi \rangle}{\partial T}$



- Order parameter for deconfinement ( $F_q = \infty \rightarrow$  no free quarks)
- Polyakov loop of minimum of background field potential upper bound for expectation value of full Polyakov loop
- For more details see C.F. Fischer et al., PLB 732 (2014) and Fister and Pawlowski, PRD 88 (2013)



• Order parameter for deconfinement ( $F_q = \infty \rightarrow$  no free quarks)

- Polyakov loop of minimum of background field potential upper bound for expectation value of full Polyakov loop
- For more details see C.F. Fischer et al., PLB 732 (2014) and Fister and Pawlowski, PRD 88 (2013)



- Order parameter for deconfinement ( $F_q = \infty \rightarrow$  no free quarks)
- Polyakov loop of minimum of background field potential upper bound for expectation value of full Polyakov loop
- For more details see C.F. Fischer et al., PLB 732 (2014) and Fister and Pawlowski, PRD 88 (2013)

$$\begin{aligned} & \text{Polyakov loop} \\ L[A_0] &= \frac{1}{N_C} \operatorname{Tr} P e^{ig \int_0^\beta d\tau A_0(\vec{x}, \tau)} \\ \langle L[A_0] \rangle &\propto e^{-F_q/T} = \begin{cases} 0 & \text{if } F_q = \infty \\ \text{non-zero} & \text{if } F_q < \infty \end{cases} \end{aligned}$$

- Order parameter for deconfinement ( $F_q = \infty \rightarrow$  no free quarks)
- Polyakov loop of minimum of background field potential upper bound for expectation value of full Polyakov loop
- For more details see C.F. Fischer et al., PLB 732 (2014) and Fister and Pawlowski, PRD 88 (2013)

# Some time passes...



Christian A. Welzbacher (JLU Giessen)

Fairness2014 (Vietri sul Mare)

# Outline

### Introduction

### Tools and toys

3 Current status and results

- Unquenched gluon propagator
- Results at  $\mu = 0 \text{ MeV}$
- Phase diagram

#### Conclusion and outlook

# Unquenched gluon propagator $N_f=2$



- Gluon propagators for  $N_f=2$  with  $m_{\pi}=316$  MeV
- DSE results calculated before lattice results
- Lattice results from R. Aouane et al., Phys. Rev. D87 (2013) 11, 114502
- $\rightarrow$  Procedure works qualitatively (quantitatively on a good level)

#### Remember...

- Fix d₁ to reproduce T<sub>c</sub> of lattice QCD results for N<sub>f</sub>=2+1 at µ=0 MeV and add charm quark
   → Sets A
- ② Fix  $d_1$  to reproduce the scale from vacuum physics in the same truncation ( $N_f$ =2+1 and  $N_f$ =2+1+1 seperately via Bethe-Salpeter equation (BSE), see *w. Heupel, T. Goecke, C.F. Fischer, Eur. Phys.J. A50* (2014) 85) → Sets B

# Including the charm quark

Remember...



- Fix d₁ to reproduce T<sub>c</sub> of lattice QCD results for N<sub>f</sub>=2+1 at µ=0 MeV and add charm quark
   → Sets A
- ② Fix  $d_1$  to reproduce the scale from vacuum physics in the same truncation ( $N_f$ =2+1 and  $N_f$ =2+1+1 seperately via Bethe-Salpeter equation (BSE), see *w. Heupel, T. Goecke, C.F. Fischer, Eur.Phys.J. A50* (2014) 85) → Sets B

# Including the charm quark

Remember...



 Fix d₁ to reproduce T<sub>c</sub> of lattice QCD results for N<sub>f</sub>=2+1 at µ=0 MeV and add charm quark
 → Sets A

② Fix *d*<sub>1</sub> to reproduce the scale from vacuum physics in the same truncation (*N<sub>f</sub>*=2+1 and *N<sub>f</sub>*=2+1+1 seperately via Bethe-Salpeter equation (BSE), see *w. Heupel, T. Goecke, C.F. Fischer, Eur. Phys. J. A50 (2014) 85*) → Sets B

# Including the charm quark

Remember...



- Fix d₁ to reproduce T<sub>c</sub> of lattice QCD results for N<sub>f</sub>=2+1 at µ=0 MeV and add charm quark
   → Sets A
- ② Fix d₁ to reproduce the scale from vacuum physics in the same truncation (N<sub>f</sub>=2+1 and N<sub>f</sub>=2+1+1 seperately via Bethe-Salpeter equation (BSE), see w. Heupel, T. Goecke, C.F. Fischer, Eur.Phys.J. A50 (2014) 85) → Sets B

### Results at $\mu = 0$ MeV I



• Tuned d<sub>1</sub> to get good agreement with lattice data Borsanyi et al. JHEP 1009 073

Nontrivial result: perfect agreement for steepness for Set A<sub>2+1</sub>

### Results at $\mu = 0$ MeV II



- Steepness is conserved
- Adding the charm quark without adjustment shifts the curve to lower temperatures for Set  $A_{2+1+1}$  ( $\Delta T_c \approx -18$  MeV)

## Results at $\mu = 0$ MeV III



- Shape of the curve changed slightly
- Chiral condensate for Sets B does not differ for N<sub>f</sub>=2+1 and N<sub>f</sub>=2+1+1
- Does that continue for  $\mu > 0$ ?

# Phase diagram Sets B



• Difference  $\Delta T_c \approx -23$  MeV compared to lattice results at  $\mu = 0$ MeV Borsanyi et al. JHEP 1009 073

 $\rightarrow$  systematical error for scale set in truncation

 Physics fixed in vacuum → no influence of charm quark within numerical resolution for Sets B

Christian A. Welzbacher (JLU Giessen)

QCD phase diagramm with DSEs

# Phase diagram - prediction



- Chiral crossover defined via inflection point, Set A<sub>2+1</sub>
- Curvature lattice from *G. Endrodi et al.*, JHEP 1104, 001 (2011), O. Kaczmarek et al., Phys.Rev. D83, 014504 (2011) and *P. Cea et al.*, Phys.Rev. D89, 074512 (2014)

Christian A. Welzbacher (JLU Giessen)

QCD phase diagramm with DSEs

Fairness2014 (Vietri sul Mare)

- 2 Tools and toys
- 3 Current status and results
- Conclusion and outlook

#### Conclusion

- Used Dyson-Schwinger equations to calculate quark and gluon propagators in medium
- Results quantitatively comparable with lattice QCD
- Prediction for the phase diagram for N<sub>f</sub>=2+1 holds also for N<sub>f</sub>=2+1+1 due to little influence of charm quark

#### Outlook

- Baryonic (future: mesonic) effects under investigation
- Quark-gluon vertex?
- Spectral properties of the quark

# THANK YOU FOR YOUR ATTENTION!



Christian A. Welzbacher (JLU Giessen) QCD phase dia

QCD phase diagramm with DSEs

Fairness2014 (Vietri sul Mare)