GOETHE

UNIVERSITÄT
FRANKFURT AM MAIN

Non-conventional mesons @ PANDA

Fairness 2014 - Vietri sul Mare

Francesco Giacosa

25/9/2014

Outline

The Lagrangian of QCD and its symmetries
What is a meson? Conventional mesons and nonconventional mesons
PANDA: what it will search
Some selected results of the eLSM: the scalar and the pseudoscalar glueballs.

Non-quarkonium candidates: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ states and other ambiguous states
Summary

The Lagrangian of QCD and its symmetries

Born	Giuseppe Lodovico Lagrangia
	25 January 1736
	Turin
Died	10 April 1813 (aged 77)
	Paris

The QCD Lagrangian

Quark: u,d,s and c,b,t R,G,B

$$
q_{i}=\left(\begin{array}{c}
q_{i}^{R} \\
q_{i}^{G} \\
q_{i}^{B}
\end{array}\right) ; i=u, d, s, \ldots
$$

8 type of gluons ($R \bar{G}, B \bar{G}, \ldots$)

$$
\mathcal{L}_{Q C D}=\sum_{i=1}^{N_{f}} \bar{G}_{i}\left(i \gamma^{\mu} D_{\mu}-m_{i}\right) q_{i}-\frac{1}{4} G_{\mu \mu}^{a} G^{a, \mu \nu}
$$

$$
A_{\mu}^{a} ; a=1, \ldots, 8
$$

Feynman diagrams of QCD

Gluon-quark-antiquark vertex

3-gluon vertex

4-gluon vertex

Trace anomaly: the emergence of a dimension

Chiral limit: $m_{i}=0$
$x^{\mu} \rightarrow x^{\prime \mu}=\lambda^{-1} x^{\mu} \quad \begin{aligned} & \text { is a classical symmetry broken by quantum fluctuations } \\ & \text { (trace anomaly) }\end{aligned}$
$g_{0} \xrightarrow{\text { Renormierung }} g(\mu) \quad$ Dimensional transmutation $\quad \Lambda_{\mathrm{YM}} \approx 250 \mathrm{M} \mathrm{eV}$

$$
\alpha_{\mathrm{s}}(\mu=\mathrm{Q})=\frac{\mathrm{g}^{2}(\mathrm{Q})}{4 \pi}
$$

Effective gluon mass: $m_{\text {ghon }}=0 \rightarrow m_{\text {ghon }}^{*} \approx 500-800 \mathrm{MeV}$
Gluon condensate: $\left\langle G_{\mu v}^{a} G^{a, \mu v}\right\rangle \neq 0$

Flavor symmetry

Gluon-quark-antiquark vertex.
It is democratic! The gluon couples to each flavor with the same strength

$$
\begin{gathered}
q_{i} \rightarrow U_{i j} q_{j} \\
\mathrm{U} \in \mathrm{U}(3)_{\mathrm{V}} \rightarrow \mathrm{U}^{+} \mathrm{U}=1
\end{gathered}
$$

Chiral symmetry

Right-handed:
Left-handed:

$$
\begin{gathered}
q_{i}=q_{i, R}+q_{i, L} \\
q_{i, R}=\frac{1}{2}\left(1+\gamma^{5}\right) q_{i} \\
q_{i, L}=\frac{1}{2}\left(1-\gamma^{5}\right) q_{i} \\
\mathrm{q}_{\mathrm{i}}=\mathrm{q}_{\mathrm{i}, \mathrm{R}}+\mathrm{q}_{\mathrm{i}, \mathrm{~L}} \rightarrow \mathrm{U}_{\mathrm{ij}}^{\mathrm{R}} \mathrm{q}_{\mathrm{j}, \mathrm{R}}+\mathrm{U}_{\mathrm{ij}}^{\mathrm{L}} \mathrm{q}_{\mathrm{j}, \mathrm{~L}}
\end{gathered}
$$

$$
U(3)_{R} \times U(3)_{L}=U(1)_{R+L} \times U(1)_{R-L} \times S U(3)_{R} \times S U(3)_{L}
$$

In the chiral limit ($\mathrm{m}_{\mathrm{i}}=0$) chiral symmetry is exact

Spontaneous breaking of chiral symmetry

$$
U(3)_{R} \times U(3)_{L}=U(1)_{R+L} \times U(1)_{R-L} \times S U(3)_{R} \times S U(3)_{L}
$$

SSB: $\operatorname{SU}(3)_{\mathrm{R}} \times \operatorname{SU}(3)_{\mathrm{L}} \rightarrow \mathrm{SU}(3)_{\mathrm{V}=\mathrm{R}+\mathrm{L}} \quad$ Chiral symmetry \rightarrow Flavor symmetry

$$
\begin{gathered}
\left\langle\bar{q}_{i} q_{i}\right\rangle=\left\langle\bar{q}_{i, R} q_{i, L}+\bar{q}_{i, L} q_{i, R}\right\rangle \neq 0 \\
\mathrm{~m} \approx \mathrm{~m}_{\mathrm{u}} \approx \mathrm{~m}_{\mathrm{d}} \approx 5 \mathrm{MeV} \rightarrow \mathrm{~m}^{*} \approx 300 \mathrm{MeV}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{m}_{\rho-\mathrm{meson}} \approx 2 \mathrm{~m}^{*} \\
& \mathrm{~m}_{\text {proton }} \approx 3 \mathrm{~m}^{*}
\end{aligned}
$$

Symmetries of QCD: summary

SU(3)color: exact. Confinement: you never see color, but only white states.

Dilatation invariance: holds only at a classical level and in the chiral limit. Broken by quantum fluctuations (trace anomaly) and by small quark masses
$\mathbf{S U}(3) \mathrm{RxSU}(3) \mathrm{L}: \quad$ holds in the chiral limit, but is broken by nonzero quark masses. Moreover, it is spontaneously broken to $\mathrm{U}(3) \mathrm{V}=\mathrm{R}+\mathrm{L}$
$\mathbf{U}(1) \mathrm{A}=\mathrm{R}-\mathrm{L}: \quad$ holds at a classical level, but is also broken by quantum fluctuations (chiral anomaly)

FRANKFURT AM MAIN

What is a meson?

Hadrons

No ,colored‘ state has been seen.
Confinement: physical states are white and are called hadrons.

Hadrons can be:
Mesons: bosonic hadrons
Baryons: fermionic hadrons

Definition(s):

1) A meson is a strongly interacting particle with integer spin.
2) A meson is a strongly interacting particle with zero baryon number.

A meson is not necessarily a quark-antiquark state

Conventional mesons

Quark: u,d,s,... R,G,B

Quark-antiquark bound states: conventional mesons

$$
\mid \text { color }\rangle=\sqrt{1 / 3}(\bar{R} R+\bar{B} B+\bar{G} G)
$$

Non-conventional mesons

1) Glueballs
2) Hybrids
3) Tetraquarks
4) Molecular states (dynamical generation)

Short digression: is wikipedia correct?

Conclusion: read the spanish wiki in the preparation of your PhD exam!

Back to conventional mesons

Surely, with quark-antiquark states we can understand a lot of QCD, but definitely not everything.

$$
\begin{aligned}
& \vec{L}, \vec{S} \quad \longleftrightarrow \quad P=-(-1)^{L} \quad C=(-1)^{L+S} \\
& \vec{L}, \vec{S} \quad \longleftrightarrow \vec{J}=\vec{L}+\vec{S} \quad J^{P C}
\end{aligned}
$$

$$
\mathrm{L}=\mathrm{S}=0 \rightarrow \mathrm{~J}^{\mathrm{PC}}=0^{-+} \text {pseudoscalar mesons }
$$

$$
\begin{aligned}
& \left.\left.\left|\pi^{+}\right\rangle=|\mathrm{ud}\rangle \mid \text { space }: L=0\right\rangle \mid \text { spin }: \mathrm{S}=0\right\rangle|\overline{\mathrm{R}} \mathrm{R}+\overline{\mathrm{B}} \mathrm{~B}+\overline{\mathrm{G} G}\rangle \\
& \left.\left.\left|\pi^{-}\right\rangle=|\mathrm{d} \overline{\mathrm{u}}\rangle \mid \text { space }: \mathrm{L}=0\right\rangle \mid \text { spin }: \mathrm{S}=0\right\rangle|\overline{\mathrm{R}} \mathrm{R}+\overline{\mathrm{B} B}+\overline{\mathrm{G}} \mathrm{G}\rangle \\
& \left.\left.\left|\pi^{0}\right\rangle=|\mathrm{uu}-\mathrm{d} \overline{\mathrm{~d}}\rangle \mid \text { space }: \mathrm{L}=0\right\rangle \mid \text { spin }: \mathrm{S}=0\right\rangle|\overline{\mathrm{R}} \mathrm{R}+\overline{\mathrm{B}} \mathrm{~B}+\overline{\mathrm{G} G}\rangle
\end{aligned}
$$

$$
\left.\left.\left|\mathrm{K}^{+}\right\rangle=|\mathrm{us}\rangle \mid \text { space }: \mathrm{L}=0\right\rangle \mid \text { spin }: \mathrm{S}=0\right\rangle|\overline{\mathrm{R} R}+\overline{\mathrm{B}} \overline{\mathrm{~B}}+\overline{\mathrm{G} G}\rangle
$$

$$
\left.\left.\left|D^{0}\right\rangle=|u \bar{c}\rangle \mid \text { space }: L=0\right\rangle \mid \text { spin }: S=0\right\rangle|\overline{\mathrm{R}} \mathrm{R}+\overline{\mathrm{B}} \mathrm{~B}+\overline{\mathrm{G}} \mathrm{G}\rangle
$$

$$
\mathrm{L}=0, \mathrm{~S}=1 \rightarrow \mathrm{~J}^{\mathrm{PC}}=1^{--} \quad \text { vector mesons }
$$

$$
\begin{aligned}
& \left.\left.\left|\rho^{+}\right\rangle=|\mathrm{u} \overline{\mathrm{~d}}\rangle \mid \text { space }: \mathrm{L}=0\right\rangle \mid \text { spin }: \mathrm{S}=1\right\rangle|\overline{\mathrm{R} R}+\overline{\mathrm{B}} \mathrm{~B}+\overline{\mathrm{G} G}\rangle \\
& \ldots \\
& \left.\left.\left|\mathrm{K}^{*}(892)^{+}\right\rangle=|\mathrm{us}\rangle \mid \text { space }: \mathrm{L}=0\right\rangle \mid \text { spin }: \mathrm{S}=1\right\rangle|\overline{\mathrm{R} R}+\overline{\mathrm{B}} \mathrm{~B}+\overline{\mathrm{G} G}\rangle \\
& \cdots \\
& \left.\left.\left|D^{* 0}\right\rangle=|\mathrm{uc}\rangle \mid \text { space }: \mathrm{L}=0\right\rangle \mid \text { spin }: \mathrm{S}=1\right\rangle|\overline{\mathrm{R}} \mathrm{R}+\overline{\mathrm{B}} \mathrm{~B}+\overline{\mathrm{G}} \mathrm{G}\rangle \\
& \cdots \\
& |\mathrm{j} / \Psi\rangle=|\mathrm{c} \overline{\mathrm{c}}\rangle \mid \text { space }: \mathrm{L}=0\rangle \mid \text { spin }: \mathrm{S}=1\rangle|\overline{\mathrm{R} R}+\overline{\mathrm{B}} B+\overline{\mathrm{G}} \mathrm{G}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{L}=\mathrm{S}=1 \rightarrow \mathrm{~J}^{\mathrm{PC}}=0^{++} \text {scalar mesons } \\
& |\sigma\rangle=|\mathrm{u} \overline{\mathrm{u}}+\mathrm{d} \overline{\mathrm{~d}}\rangle \mid \text { space }: \mathrm{L}=1\rangle|\operatorname{spin}: \mathrm{S}=1\rangle|\overline{\mathrm{R}} \mathrm{R}+\overline{\mathrm{B}} \mathrm{~B}+\overline{\mathrm{G}} \mathrm{G}\rangle \\
& \text { corresponds to the resonance } \mathrm{f}_{0}(1370) .
\end{aligned}
$$

$$
\left.\left.\left|\chi_{\mathrm{c} 0}(1 \mathrm{~S})\right\rangle=|\mathrm{c} \overline{\mathrm{c}}\rangle \mid \text { space }: \mathrm{L}=1\right\rangle \mid \text { spin }: \mathrm{S}=1\right\rangle|\overline{\mathrm{R}} \mathrm{R}+\overline{\mathrm{B}} \mathrm{~B}+\overline{\mathrm{GG}}\rangle
$$

Spontaneous symmetry breaking at the meson level
$\pi=\pi^{0} \equiv \sqrt{1 / 2}(\bar{u} u-\overline{d d})$ neutral pion
$\sigma \equiv \sqrt{1 / 2}(\bar{u} u+\overline{d d}) \equiv \mathrm{f}_{0}(1370)$
Chiral transformation: $\sigma \leftrightarrow \pi$
$\mathrm{V}=\frac{\mathrm{m}_{0}^{2}}{2}\left(\sigma^{2}+\pi^{2}\right)+\frac{\lambda}{4}\left(\sigma^{2}+\pi^{2}\right)^{2}$
$\mathrm{m}_{0}^{2}<0 \rightarrow$ Mexican hat
SSB: $\langle\sigma\rangle \propto\langle u \bar{u}+d \bar{d}\rangle \neq 0$

The donkey of Buridan

Jean Buridan (in Latin, Johannes Buridanus) (ca. 1300 - after 1358)

Spontaneous Symmetry Breaking

Although Nicolás likes the symmetric food configuration, he must break the symmetry deciding which carrot is more appealing. In three dimensions, there is a continuous valley where Nicolás can move from one carrot to the next without effort.

Exotic quantum numbers

Not all quantum numbers are permitted for a quark-antiquark states.

$$
\mathrm{J}^{\mathrm{PC}}=0^{+-}, 1^{-+}, 2^{+-}, \ldots
$$

are exotic quantum numbers.
In PDG: $\pi_{1}(1400)$ and $\pi_{1}(1600)$ have $J^{P C}=1^{-+}$. These states are not quarkonia.

Short ex.: show that it is so!

$$
\begin{aligned}
& P=-(-1)^{L} \\
& C=(-1)^{L+S} \\
& \vec{J}=\vec{L}+\vec{S}
\end{aligned}
$$

Glueball spectrum from quenched lattice QCD

PANDA experiment at FAIR

Hadronic experiments

Proton-proton
(WA79,WA102,LHC)

Electron-positron
(Belle, Babar,BES,KLOE,...)

Proton-antiproton
 (Lear,Fermilab, and in the future: Panda)

The PANDA experiment

Formation process: the energy range at PANDA

$$
\overline{\mathrm{p}}+\mathrm{p} \rightarrow \mathrm{X}
$$

...then X decays in something else (pions,kaons,...)
Antiproton moves, proton at rest

$$
E_{\bar{p}}=\sqrt{\overrightarrow{\mathrm{q}}^{2}+\mathrm{m}_{\mathrm{p}}^{2}}
$$

$\mathrm{m}_{\mathrm{x}}=\sqrt{2 \mathrm{~m}_{\mathrm{p}}\left(\mathrm{m}_{\mathrm{p}}+\mathrm{E}_{\mathrm{p}}\right)}$
Short ex (2): show that it is so!
$U \operatorname{sing}|\overrightarrow{\mathrm{q}}|=1.5-10 \mathrm{GeV}: \mathrm{m}_{\mathrm{x}}=2.25-4.53 \mathrm{GeV}$

Which glueballs will be formed?

Interesting objects: Oddballs. These are glueballs with exotic quantum numbers.

Selected results of the eLSM

Talks of:
Anja Habersetzer ($\mathrm{Nf}=2$ and spectral functions) Peter Kovacs ($\mathrm{Nf}=3$ and nonzero temperature)
Walaa Eshraim ($\mathrm{Nf}=4$: charmed mesons)

Fields of the eLSM

- Quark-antiquark mesons: scalar, pseudoscalar, vector and axialvector quarkonia.
- Additional mesons: The scalar and the pseudoscalar glueballs
- Baryons: nucleon doublet and its partner
(in the so-called mirror assignment)

Criteria

We construct the Lagrangian of the so-called Extended Linear Sigma Model (ELSM) according to:
dilatation symmetry
and
chiral invariance.
The breaking of the dilatation symmetry is only included in the "gluonic part"...(scalar glueball and axial anomaly) through a dilaton field

Moreover, invariance under C and P is also taken into account.

Model of QCD - eLSM with scalar Glueball

$$
\begin{aligned}
& \mathcal{L}= \frac{1}{2}\left(\partial_{\mu} G\right)^{2}-\frac{1}{4} \frac{m_{G}^{2}}{\Lambda^{2}}\left(G^{4} \ln \left|\frac{G}{\Lambda}\right|-\frac{G^{4}}{4}\right)+\operatorname{Tr}\left[\left(D^{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)\right] \\
&-m_{0}^{2}\left(\frac{G}{G_{0}}\right)^{2} \operatorname{Tr}\left[\Phi^{\dagger} \Phi\right]-\lambda_{1}\left(\operatorname{Tr}\left[\Phi^{\dagger} \Phi\right]\right)^{2}-\lambda_{2} \operatorname{Tr}\left[\left(\Phi^{\dagger} \Phi\right)^{2}\right] \\
&+\left(\frac{G}{G_{0}}\right)^{2} \operatorname{Tr}\left[\left(\frac{m_{1}^{2}}{2}+\Delta\right)\left(\left(L^{\mu}\right)^{2}+\left(R^{\mu}\right)^{2}\right)\right] \\
&-\frac{1}{4} \operatorname{Tr}\left[\left(L^{\mu \nu}\right)^{2}+\left(R^{\mu \nu}\right)^{2}\right]+\operatorname{Tr}\left[H\left(\Phi^{\dagger}+\Phi\right)\right] \\
&+c_{1}\left[\operatorname{det}(\Phi)-\operatorname{det}\left(\Phi^{\dagger}\right)\right]^{2}+\frac{h_{1}}{2} \operatorname{Tr}\left[\Phi^{\dagger} \Phi\right] \operatorname{Tr}\left[L_{\mu} L^{\mu}+R_{\mu} R^{\mu}\right] \\
&+h_{2} \operatorname{Tr}\left[\Phi^{\dagger} L_{\mu} L^{\mu} \Phi+\Phi R_{\mu} R^{\mu} \Phi^{\dagger}\right]+2 h_{3} \operatorname{Tr}\left[\Phi R_{\mu} \Phi^{\dagger} L^{\mu}\right] \\
& \Phi=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{\left(\sigma_{N}+a_{0}^{0}\right)+i\left(\eta_{N}+\pi^{0}\right)}{\sqrt{2}} & a_{0}^{+}+i \pi^{+} & K_{0}^{\star+}+i K^{+} \\
a_{0}^{-}+i \pi^{-} & \frac{\left(\sigma_{N}-a_{0}^{0}\right)+i\left(\eta_{N}-\pi^{0}\right)}{\sqrt{2}} & K_{0}^{\star 0}+i K^{0} \\
K_{0}^{\star-}+i K^{-} & \bar{K}_{0}^{\star 0}+i \bar{K}^{0} & \sigma_{S}+i \eta_{S}
\end{array}\right) \\
& L^{\mu}, R^{\mu}= \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\frac{\omega_{N} \pm \rho^{0}}{\sqrt{2}} \pm \frac{f_{1 N} \pm a_{1}^{0}}{\sqrt{2}} & \rho^{+} \pm a_{1}^{+} & K^{\star+} \pm K_{1}^{+} \\
\rho^{-} \pm a_{1}^{-} & \frac{\omega_{N} \mp \rho^{0}}{\sqrt{2}} \pm \frac{f_{1 N} \mp a_{1}^{0}}{\sqrt{2}} & K^{\star 0} \pm K_{1}^{0} \\
K^{\star-} \pm K_{1}^{-} & K^{\star 0} \pm i \bar{K}_{1}^{0} & \omega_{S} \pm f_{1 S}
\end{array}\right)
\end{aligned}
$$

S. Janowski, D. Parganlija, F. Giacosa, D. H. Rischke, Phys. Rev. D84, 054007 (2011)
D. Parganlija, P. Kovacs, G. Wolf , F. Giacosa, D. H. Rischke, Phys.Rev. D87 (2013) 014011
W. I. Eshraim, F.G., D.H. Rischke, arXiv: 1405.5861

Technical remarks

Spontaneous Symmetry Breaking (SSB) implies:
$\sigma_{N} \rightarrow \sigma_{N}+\phi_{N} \quad, \quad \sigma_{S} \rightarrow \sigma_{S}+\phi_{S}$

Explicit symmetry breaking terms:
$H=\operatorname{diag}\left\{h_{1}, h_{2}, h_{3}\right\}$ with $h_{i} \propto m_{i} \quad m_{\pi}^{2} \propto\left(m_{u}+m_{d}\right)\langle\bar{q} q\rangle$
$\delta=\operatorname{diag}\left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$ with $\delta_{i} \propto m_{i}^{2}$
Parameter c: axial anomaly and eta-prime mass
But: only a finite number of terms is allowed!

We can calculate: masses, decays, and scattering lengths.
Example: ρ-meson decay into pions

Decay processes: do not forget that...

Schrödingers Katze

Results of the fit (11 parameters, 21 exp. quantities)

arXiv:1208.0585
Overall phenomenology is good.
Scalar mesons $a_{0}(1450)$ and $K_{0}(1430)$ above 1 GeV and are quark-antiquark states.
Importance of the (axial-)vector mesons

The scalar glueball

The calculation of the full mixing problem in the $\mathrm{I}=\mathrm{J}=0$ sector shows that:

$$
\left(\begin{array}{l}
\mathrm{f}_{0}(1370) \\
\mathrm{f}_{0}(1500) \\
\mathrm{f}_{0}(1710)
\end{array}\right)=\left(\begin{array}{ccc}
0.91 & -0.24 & 0.33 \\
0.30 & 0.94 & -0.17 \\
-0.27 & 0.26 & 0.93
\end{array}\right)\left(\begin{array}{c}
\sigma_{\mathrm{N}} \equiv \overline{\mathrm{n}} \mathrm{n}=\sqrt{1 / 2}(\overline{\mathrm{u}} \mathrm{u}+\overline{\mathrm{d} d}) \\
\sigma_{\mathrm{S}} \equiv \overline{\mathrm{ss}} \\
\mathrm{G} \equiv \mathrm{gg}
\end{array}\right)
$$

Ergo: $f 0(1710)$ is predominantly a glueball! ...and fo(1370) is the chiral partner of the pion

Details in S. Janowski, F.G, D. H. Rischke, arXiv: 1408.4921
In PANDA: production processes with these states.

The pseudoscalar glueball

UNIVERSITÄT
FRANKFURT AM MAIN
$\mathcal{L}_{\tilde{G} \text {-mesons }}^{i n t}=i c_{\tilde{G} \Phi} \tilde{G}\left(\operatorname{det} \Phi-\operatorname{det} \Phi^{\dagger}\right)$

Quantity	Value
$\Gamma_{\tilde{G} \rightarrow K K \eta} / \Gamma_{\tilde{C}}^{t o t}$	0.049
$\Gamma_{\tilde{G} \rightarrow K K \eta^{\prime}} / \Gamma_{\tilde{G}}^{\text {otot }}$	0.019
$\Gamma_{\tilde{G} \rightarrow \eta \eta \eta} / \Gamma_{\tilde{G}}^{\text {tot }}$	0.016
$\Gamma_{\tilde{G} \rightarrow \eta \eta \eta^{\prime}} \Gamma_{\tilde{G}}^{\underline{t o t}}$	0.0017
$\Gamma_{\tilde{G} \rightarrow \eta \eta^{\prime} \eta^{\prime}} / \Gamma_{\tilde{C}}^{\text {Lot }}$	0.00013
$\Gamma_{\tilde{G} \rightarrow K K \pi} / \Gamma_{\tilde{C}}^{\text {ot }}$	0.46
$\Gamma_{\tilde{G} \rightarrow \eta \pi \pi} / \Gamma_{\tilde{C}}^{t o t}$	0.16
$\Gamma_{\tilde{G} \rightarrow \eta^{\prime} \pi \pi} / \Gamma_{\tilde{G}}^{\text {tot }}$	0.094

Quantity	Value
$\Gamma_{\tilde{G} \rightarrow K K_{S}} / \Gamma_{\tilde{\tilde{C}}}^{t o t}$	0.059
$\Gamma_{\tilde{G} \rightarrow a_{0} \pi} / \Gamma_{\tilde{G}}^{t o t}$	0.083
$\Gamma_{\tilde{G} \rightarrow \eta \sigma_{N}} / \Gamma_{\tilde{G}}^{t o t}$	0.028
$\Gamma_{\tilde{G} \rightarrow \eta \sigma_{S}} / \Gamma_{\tilde{C}}^{t} t$	0.012
$\Gamma_{\tilde{G} \rightarrow \eta^{\prime} \sigma_{N}} / \Gamma_{\tilde{G}}^{t o t}$	0.019

$$
\Gamma_{\widetilde{G} \rightarrow \pi \pi \pi}=0
$$

PANDA will produce a pseudoscalar glueball (if existent).
Details in:
W. Eshraim, S. Janowski, F.G., D. Rischke, Phys.Rev. D87 (2013) 054036. arxiv: 1208.6474 .
W. Eschraim, S. Janowski, K. Neuschwander, A. Peters, F.G., Acta Phys. Pol. B, Prc. Suppl. 5/4, arxiv: 1209.3976

Other glueballs

Calculation of branching ratios for the other glueball states.

Ongoing studies: vector, tensor, and pseudotensor glueballs.
...but before 2018 we will do all of them...

Not only glueballs: other interesting states... that indeed surely exist $)$

$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ states

X(3872). $\mathrm{M}_{\mathrm{x}}=3871.52 \pm 0.2 \mathrm{MeV}, \Gamma=1.3 \pm 0.6 \mathrm{MeV}, \mathrm{J}^{\mathrm{PC}}=1^{++}$

Various works (see Brambilla et al, EPJ C (2011) 71): tetraquark or molecular states the most probable intepretations. (Mass too light when compared to)
„Perfect" for PANDA research program: direct formation.

My personal opinion: a D-D* molecular state which arises due to mesonic loops.

$$
\mathrm{Y}(4260) \quad \mathrm{M}_{\mathrm{Y}}=4263 \pm 5 \mathrm{MeV}, \Gamma=108 \pm 14 \mathrm{MeV}, \mathrm{~J}^{\mathrm{PC}}=1^{--}
$$

Formation at PANDA.
$\mathrm{Z}(4430)^{+}$
$\mathrm{M}_{\mathrm{Z}}=443 \pm 24 \mathrm{MeV}, \Gamma=107_{-71}^{+113} \mathrm{MeV}, \mathrm{J}^{\mathrm{PC}}=$?
Production at PANDA. Surely not a quark-antiquark state.

```
D*so(2317)
```

D*so(2317): too light to be a cs,$\overline{c s}$ quarkonium.
$\mathrm{J}^{\mathrm{P}}=0^{+}$, Mass $=2317.8 \pm 0.6 \mathrm{MeV}$
In arXiv: 1405.5861 we find that the quarkonium state:
$M_{D_{s 0}^{*}}=2.47 \mathrm{GeV}>\mathrm{M}_{\mathrm{D}_{0}^{*}}($ which is a uc,\ldots state and has a mass of 2318 MeV)
$\Gamma_{\mathrm{D}_{\mathrm{s} 0}}$ very large

It is a good candidate to be a molecular state / dynamically generated state...

Lust but not least: the light scalar states

$a_{0}(980) k(800) \quad \mathrm{f}_{0}(980) \quad \mathrm{f}_{0}(500)$
$\mathrm{J}^{\mathrm{PC}}=0^{++}$
f_{0} (500) important at nonzero density (nuclear matter)
and at nonzero temperature (for the correct phase transition).

The light scalars can be interpeted as tetraquark state

A tetraquark is the bound state of two diquarks

An example of "good diquark" is:
$|q q\rangle=\mid$ Space $: L=0\rangle|\operatorname{Spin}:(\uparrow \downarrow-\downarrow \uparrow\rangle| f:(u d-d u)\rangle|c:(R B-B R)\rangle$

Example: $\quad a_{0}^{+}(980)=-[\overline{\mathrm{d}}, \overline{\mathrm{s}}][\mathrm{u}, \mathrm{s}] \quad$ (and not $\mathrm{u} \overline{\mathrm{d}}$)

Tetraquark interpretation

$$
\begin{aligned}
& {[u, s][\bar{d}, \bar{s}],[\bar{u}, \bar{s}][d, s],} \\
& ([u, s][\overline{[}, \bar{s}]-[d, s][\bar{d}, \bar{s}])
\end{aligned}
$$

$$
[u, d][\bar{d}, \bar{s}],[\bar{u}, \bar{d}][d, s],
$$

$$
[u, d][\bar{u}, \bar{s}],[\bar{u}, \bar{d}][u, s]
$$

$$
\approx[\bar{u}, \bar{d}][u, d]
$$

$$
\approx([u, s][\bar{u}, \bar{s}]+[d, s][\bar{d}, \bar{s}])
$$

Strong decays of a tetraquark state:

Jaffe-orig: Jaffe, Phys. Rev. D 15 (1977),

Maiani: Maiani et al, Phys. Rev. Lett. (2004)

Bugg-06: D. V. Bugg, EPJC47 (2006)

Systematic evaluation of amplitudes:

My work: F.G., Phys. Rev. D 74 (2006)

Summary

Summary

Confinement: hadrons

Mesons: not only quark-antiquark states
PANDA experiment will be able to form non-conventional states, most notably glueballs, but also the X, Y states
...it will also produce many ambiguous states and help to understand them..

We (in particular theorists) definitely need the PANDA experiment ...we still have some time for further predictions...

Thank You

