## Backtracking algorithm for lepton reconstruction with HADES

PATRICK SELLHEIM FOR THE HADES COLLABORATION







Helmholtz Graduate School for Hadron and Ion Research

## Motivation Backtracking Results

## Motivation



Investigation of long lived ( $\tau \approx 10 \text{ fm/c}$ ) strongly interacting matter at T < 100 MeV and high densities ( $\rho/\rho_0 > 2$ )

- System is baryon dominated
- In-medium modifications of vector meson spectral functions

## Motivation

[MeV]



Investigation of long lived  $(\tau \approx 10 \text{ fm/c})$  strongly interacting matter at T < 100 MeV and high densities ( $\rho/\rho_0 > 2$ )

4

- System is baryon dominated
- In-medium modifications of vector meson spectral functions

 $e^+$ 

## EM probes in heavy ion collisions



#### $\gamma$ , $\gamma^*$ do not interact strongly

- Can be used to extract primary information of hot and dense phase
- $\gamma$ ,  $\gamma^*$  are produced in all collision stages
  - Contributions from all stages have to be identified precisely

 $\gamma$ ,  $\gamma^*$  probe EM structure of strongly interacting matter

Invariant mass monitors directly spectral function

## Challenges and needs

#### $\gamma, \gamma^*$ are very rare probes

 Dilepton production is suppressed by factor α<sup>2</sup>: Corresponds to branching ratio ≅10<sup>-5</sup>

#### Fast detector

► 10-50 kHz trigger rate

#### Large acceptance

- ►  $18^{\circ} < \theta < 85^{\circ}$  (polar angle)
- Full azimuthal angle

At SIS18 energy range vector mesons are produced sub-threshold

#### Precise particle identification

- Hadron identification by means of time-of-flight
- Electron identification using RICH and EM shower

#### Excellent mass resolution

15 MeV/c<sup>2</sup> in the vector meson region

#### HADES experiment

Tracking system: 4 drift chamber planes + superconducting magnet



Time-of-flight detectors : RPC + TOF for hadron identification **Ring Imaging** Cherenkov detector (RICH) and PreShower: Lepton identification

## RICH ring finder

Side view

#### Front view: Event display of Au+Au beamtime at 1.23 GeV/u





## Motivation Backtracking Results

## Backtracking

#### Track preselection

- Selection of good lepton candidates based on particle velocity and energy loss
- Determination of possible ring centers
  - Based on angular information provided by reconstructed particle tracks
- Previous knowledge of close pairs
  - Track resolution : Opening angle > 2°
  - Ring resolution : Opening angle > 4°

#### Implementation

Transformation from track angles to pad plane coordinates

#### Position depended parameterization of rings

## Information extraction out of measured signals



#### Implementation

12

Transformation from track angles to pad plane coordinates

#### Position depended parameterization of rings

## Information extraction out of measured signals



#### Implementation

Transformation from track angles to pad plane coordinates

#### Position depended parameterization of rings

Information extraction out of measured signals



13

: Fired RICH pad **X** : Maximum position

## Output variables



## Particle observables

- # clusters
- # maxima ( = # photons)
- # pads ( of ring, clusters)
- Charge ( of ring, clusters)
- Quality (maxima positions)
- # Pads outside ring prediction region

 # Maxima shared with various tracks

|4

Pair

observables

- # Maxima shared with one track
- Opening angle between particle candidates

15

## Motivation Backtracking Results

## Analysis strategy





16

- Backtracking information
- PreShower information
- Energy loss in drift chambers
- Track matching quality
- Polar angle
- Energy loss in outer ToF detector

Fairness 2014, Vietri sul Mare - Patrick Sellheim - 23/09/2014

Lepton ID using decision trees

# List of input Decision trees Response variables

#Maxima #Cluster PreShower response Track matching Qa Energy loss

• • •



### Lepton ID results

#### Ring finder vs backtracking



Trade-off between purity and high efficiency

## Lepton ID results

#### Ring finder vs backtracking



Trade-off between purity and high efficiency



### Close pair rejection



- Pairing of all possible combinations
- Subtraction of same-event likesign background: Geometrical mean =  $2\sqrt{N_{++}N_{--}}$

Larger background due to increased combinations

Larger error after background subtraction

#### Remove conversion pairs to reduce background

## Invariant mass in $\pi^0$ region



Combinatorial background reduced by factor  $\cong$  4

#### Combinatorial background reduced by factor of 4

► Higher efficiency improves close pair identification → lower systematical errors

 Multi-differential analysis of invariant mass spectrum (p<sub>T</sub> , angular distribution,...)