

HADES

H-QM

in Au+Au at 1.23 GeV/u with HADES

material

e

 π^{0} , η

Claudia Behnke for the HADES collaboration

Helmholtz Research School

Quark Matter Studies

Molivation

Heavy-ion collision at 1-2 GeV/u

The freeze-oye "Cockeqil"

The freeze-oyt "Cocktail"

THE HADES AT GSI, DARMSTADT, GERMANY

HADES strategy:

- Excitation function for low-mass lepton pairs and (multi-)strange baryons and mesons
- Various aspects of baryon-resonance physics
- Beams provided by SIS18:
 π, proton, nuclei
- Full azimuthal coverage, 18° to 85° in polar angle
- Hadron and lepton identification
- Event-plane reconstruction
- ~ 80.000 channels

50 kHz event rate (400 Mbyte/s peak data rate)

How to measure π^0 and η with HADES?

$$\begin{array}{c} \pi^{0}, \eta \rightarrow \gamma \gamma & \stackrel{\text{conv}}{\rightarrow} e^{+}e^{-}e^{+}e^{-} \\ \pi^{0}, \eta \rightarrow \gamma e^{+}e^{-} \Rightarrow e^{+}e^{-}e^{+}e^{-} \\ \hline \\ \pi^{0}, \eta \rightarrow \gamma e^{+}e^{-} \Rightarrow e^{+}e^{-}e^{+}e^{-} \\ \hline \\ How to reconstruct \\ \gamma without dedicated \\ photon detector? & ldentifying 4 \\ leptons using \\ photon conversion! \\ \hline \\ \hline \\ \frac{Material}{1arget} & 0.32 & 0.54 \\ \hline \\ 1arget holder & 0.02 & 0.04 \\ \hline \\ Beam pipe & 0.26 & 0.48 \\ \hline \\ Radiator gas & 0.59 & 0.91 \\ \hline \\ Sum^{\star} & 1.2 & 2.0 \end{array}$$

STAR: PhysRevC.70.044902 CDF: PhysRevD.70.074008 HADES: - p+Nb 3.5 GeV: ALICE: Phys. Lett. B 717,162 PhysRevC.88.024904

*all values are obtained from Geant3 simulations!

22-27.09.13

20

10⁴

10⁸

10²

6.62.25

10

vertex [mm]

The analysis strategy pare 1

Lepton identification:

- Momentum < 750 MeV/c</p>
- Momentum dependent velocity cuts
- No RICH information is used
- Sharing of inner MDC segments is allowed

The analysis strategy - pare 2

Combine 4 fully reconstructed lepton candidates

10⁴ Background rejection cuts: ⊖D/Nb $\gamma\gamma$ Topological cuts on angles between e^+e^- and γ : 10^{3} γγ e⁺e⁻e⁺e⁻ α₁ <2.5°, α₂<20° 10² π⁰:10°< Θ_{γγ} < 40° e^+ η :40°< $\Theta_{\gamma\gamma}$ < 140° 10 e material π^{0}, Υ 20 80 100 120 140 40 60 160 180 $\Theta_{\gamma\gamma}$ [°] **UrQMD** simulation

π° statistics from 4.3 * 10⁹ high multiplicity Au+Au events

Background estimated using event mixing technique (red line)

Motivation for event-mixing technique

Uncorrelated $\gamma\gamma$ pairs are the main background.

Efficiency and acceptance estimation

- Simulation:
 - 10¹¹ π⁰ with Pluto Event Generator [PoS ACAT2007 076] T₁= 39 MeV, T₂= 79 MeV
- Propagation through detector geometry using Geant3 package

E E_{Acc}

Tracking and event selection like in measured data

■ E^{4e} reco

Conversion and Branching Ratio:

• $BR_{\gamma\gamma} \cdot conv_{\gamma}^{2} + BR_{e^+e^-\gamma} \cdot conv_{\gamma}$ • Identification of leptons, γ and π^0

$$\epsilon_{\text{PID}} = \epsilon_{\text{Acc}} \cdot \epsilon^{4e} \cdot (\text{BR}_{\gamma\gamma} \cdot \text{conv}_{\gamma}^{2} + \text{BR}_{e^{+e^{-\gamma}}} \cdot \text{conv}_{\gamma}) \cdot \epsilon_{\text{PID}}$$
$$= 1.7\% \cdot 3.5\% \cdot (3.2 \cdot 10^{-4}) \cdot 44\% = 8.99 \cdot 10^{-8}$$

per Evene

- Spectrum after background subtraction is corrected with ε_{tot} and normalized to the number of analysed events (4.3 •10⁹)
- Integration of the spectra in the 2σ range gives Mult(π⁰): 9.1 ± 3
- Comparable with result of charged π from FOPI Mult(π⁰): 10.4 and TAPS Mult(π⁰): 6.4 (Min bias!)

Phase space coverage

Phase space coverage

22-27.09.13

C. Behnke - FAIRNESS 2014 (Vietri sul Mare)

Yields of π° as function of m $\pi 0$

- The efficiency corrected differential yields, together with Boltzmann fits
- Single slope fit can describe the data
- Points with large corrections are excluded from fit

Yields of π° as function of m π 0

- Filled circles: measured points
- Open circles: reflected around mid-rapidiy
- Resulting slopes can be fitted with a 1/cosh(y) distribution
- Inverse slope parameter at mid-rapidity:

$$T_{B} (Y_{cm} = 0): 76 \pm 15 \text{ MeV}$$

η statistics from 4.3 * 10⁹ high multiplicity Au+Au events

Background estimated using event mixing technique (red line)

η background - subtracted

- Integration of the spectra in the 2σ range gives raw η counts:
 #(η): 551 ± 23
- Corrections not yet done

Symmery

- Reconstruction of $π^0$ and η via γ conversion
- Number of π^0 per event:
 - Mult(π⁰): 9.1 ± 3
- Phase space coverage of π⁰ signal:
 - - 0.25 <Y_{cm} <1.0
 - 300
- Reconstructed inverse slope:
 - T_B (Y_{cm} = 0): 76 ± 15 MeV
- Number of η in full beam time
 - #(η): 551 ± 23

Oyelook

- A_{part} dependent analysis of π^0 and η
- Phase space dependent analysis of η
- Systematic error estimations
- Compare the resulting cross sections with the results from dilepton analysis
- EM Calorimeter will be added for SIS100, FAIR

Thank you for your attention

Backup Slides

Au+Au Run @ 1.23 Agev, April 2012

HADES Au+Au beam time

- 24 days Au beam
- 8 kHz trigger rate
- 7.3 billion events
- Trigger on high multiplicity events (40% of most central collisions)

Simulations

- UrQMD transport model
- Transport through the detector system using Geant3 and realistic digitizers

Analysis of experimental and simulated data is identical

Challenges of (di)lepton reconstruction

Low momenta

- One lepton can be bend out by the magnetic field behind the inner MDCs

- Reconstruction efficiency is between 15 - 55%

Small opening angle

 in 93% cases α is <3°
 RICH ring finder will often identify only 1 ring

The SIS18 heavy-ion energy regime

"Resonance matter":

excitation and decay of baryonic resonances are the dominant contribution

Iife time resonance: ~1fm/c

Probing nuclear matter at:
densities: ρ_B/ρ₀ > 2
temperature: T < 100 MeV
System stays above ground state density for ~10 fm/c

Hot and dense stage: a look inside

Dalitz-decay of baryonic resonances is dominant source at low beam energies

HADES OF SIS 18 and SIS 100

- Running experiment, well understood performance
- Deliver high quality data
- Setup tests with coming heavy-ion runs at SIS-18
- Upgrade improved stability, DAQ and time resolution of the Spectrometer

Date	System	E _{kin} beam
2002	C+C	2.0 GeV/u
2004	C+C	1.0 GeV/u
2005	Ar+KCl	1.76 GeV/u
2006	p+p	1.25, 2.2, 3.5 GeV
2007	d+p	1.25 GeV
2008	p+Nb	3.5 GeV
2012	Au+Au	1.25 GeV/u

Energy and system size dependence of the excess yield

- Multiplicity of e⁺e⁻ pairs from π⁰, η, Δ and ρ
- Good agreement for π⁰ and η (implemented according to the TAPS data)

UrQMD can't fully account for the enhanced pair yield in the intermediate mass region

"Effect" of acceptance

Vertex of leptons coming from conversion in full phase space (left) and in acceptance (right)

Different colours represent different materials

