Investigation of the prompt gamma ray emission for on-line monitoring in ion therapy

Dominik Steinschaden

Dominik Steinschaden

26.9.2014

Outline

- Introduction
- Physical priciples
- Tools and Setup
- Simulations and Results
- Improvements
- Outlook

Introduction

- Increasing treatment of cancer by radiotherapy with ions
- Med Austron will start 2015 with C¹² and p⁺ beams
- No satisfying method for online monitoring
- Investigate the possibility of prompt gamma based monitoring

Physical principles

Bethe-Bloch-formula

$$\frac{dE}{dx} \approx \frac{Kn_0 (Z_{eff})^2}{\beta^2} * \ln[\frac{2m_e c^2 \beta^2}{I(1-\beta^2)}]$$

- Maximum energy loss at about 350 keV/u for C¹²
- Depth of the Bragg peak linked to the primary energy

D. Schardt et al. Heavy-ion tumor therapy: Physical and radiobiological benets. Reviews of modern physics, 82(1):383{425, 2010.

Physical principles

PET monitoring

- Prompt background radiation
 - Only between pulses or after treatment feasible
- Wash out effects
 - Economical Offline-PET inaccurate

Prompt gamma monitoring

- Emitted by excited nuclei
- < 1 ns
 - Online monitoring
- No radiation background
- No wash out effects

Tools and Setup

- Investigations based on Monte Carlo simulations
 - Gate
 - Geant4 Application for Topographic Emission based on Geant4
 - Simulation environment for medical purpose
- Task
 - Link production parameters of prompt photons to the Bragg peak position

Energy spectrum

- Prominent peaks independent from primary energy
- Also independent from the penetration depth
- Beside count rate no significance

Dominik Steinschaden

Photon production 10⁷ C¹² impinging a water target

- Signal at the Bragg peak
 - Less significance for higher primary energy
- High signal before Bragg peak
 - Mainly produced by photons < 500 keV
- Searching for an optimal energy range

2.2 MeV Photon production 10⁷ C¹² impinging a water target

- typical example for prominent peaks
- No significance at the Bragg peak
- Produced by the neutron capture of hydrogen

2.2 MeV Photon production 10⁷ C¹² impinging a water target

- typical example for prominent peaks
- No significance at the Bragg peak

 Produced by the neutron capture of hydrogen

Photon production 10⁷ C¹² impinging a water target

- Most promising energy region
- Compromise between count rate and significance

No strong significance in angle distribution

Photon production 10⁷ C¹² impinging a water target

 Worse detector efficiency

 Worse ratio between production rate and significance

Photon detection 10⁷ C¹² impinging a water target

2.3 – 6 MeV Photons

- Ideal Detectors
- 3 cm lead Collimators
- Imm gabs every 3 mm

Recalculation

- Calculate the system response function
- Define simple model of the production function

Recalculation

120/u MeV primary energy

Bragg peak at 35 mm

240/u MeV primary energy

Bragg peak at 118 mm

primary ion number	fitted Bragg depth [mm]	standard error [mm]
8 10 ⁷	38	2.15
1.6 10 ⁸	36	1.65
2.4 10 ⁸	37	1.42
3.2 10 ⁸	37	1.3
4 10 ⁸	37	1.26

primary ion number	fitted Bragg depth [mm]	standard error [mm]
8 107	116	3.25
1.6 10 ⁸	116	1.96
2.4 10 ⁸	117	2.02
$3.2 \ 10^8$	117	1.53
4 10 ⁸	118	1.52

400/u MeV primary energy

Bragg peak at 274 mm

primary ion number	fitted Bragg depth [mm]	standard error [mm]
8 10 ⁷	263	4.26
1.6 10 ⁸	273	3.4
2.4 10 ⁸	267.4	4.72
$3.2 \ 10^8$	267	2.24
4 10 ⁸	269.2	2.64

Improvements

- Primary beam
 - Gaussian shaped
 - 240 MeV/u
 - Sigma of 3 mm
- Photon production divided
 - In beam
 - Radius < 6mm
 - Out beam
 - Radius > 6 mm

Improvements

Improvements

- Poor ratio for the prominent peaks
- Worse ratio above 6 MeV
- Support the most promising energy range from 2.3 - 6 MeV

Outlook

 Verify simulation tool and data

Thank you for your attention