Bound-electron *g*-factor and fundamental constants

Dmitry A. Glazov

Department of Physics Saint-Petersburg State University

> FAIRNESS 2014

Dmitry A. Glazov Bound-electron g-factor and fundamental constants

Outline

Introduction

- Free electron g factor
- Highly charged ions
- 2 Modern experiments
- 3 Theoretical status
 - QED for bound states
 - Nuclear effects
 - Non-linear effects

Free electron *g* factor Highly charged ions

Free electron g factor

$$g_{\text{free}} = 2\left(1 + \frac{\alpha}{\pi}A^{(2)} + \left(\frac{\alpha}{\pi}\right)^2A^{(4)} + \left(\frac{\alpha}{\pi}\right)^3A^{(6)} + \dots + \Delta\right)$$

	$A^{(2i)}$	
		2.000 000 000 000
α/π	0.5	0.002 322 819 466
$(\alpha/\pi)^2$	-0.328	-0.000 003 544 610
$(\alpha/\pi)^3$	1.181	0.000 000 029 608
$(\alpha/\pi)^4$	-1.911(2)	-0.000 000 000 111
$(\alpha/\pi)^5$	9.16(58)	0.000 000 000 001
Δ		0.000 000 000 002
g free		2.002 319 304 361

Free electron g factor Highly charged ions

Free electron g factor

$$g_{ ext{free}} = 2\left(1+rac{lpha}{\pi}\, {\cal A}^{(2)} + \left(rac{lpha}{\pi}
ight)^2 {\cal A}^{(4)} + \left(rac{lpha}{\pi}
ight)^3 {\cal A}^{(6)} + \cdots + \Delta
ight)$$

Experiment: $g_{\text{free}} = 2.00231930436146(56)$

Hanneke, Fogwell, Gabrielse, PRL (2008)

Theory: $A^{(i)}, \Delta$

Aoyama, Hayakawa, Kinoshita, Nio, PRL (2012)

 $ightarrow lpha = 1/137.035\,999\,173\,(35)$

vs $\alpha = 1/137.035\,999\,044\,(90)$

Bouchendira, Cladé, Guellati-Khélifa, Nez, Biraben, PRL (2011)

Free electron *g* factor Highly charged ions

Highly charged ions

Nucleus + several electrons: $N_e \ll Z$

Nuclear potential: $V_{\rm nuc}(r) = -\frac{\alpha Z}{r}$

Electron velocity: $v/c \sim \alpha Z$

Low-Z systems: $\alpha Z \ll 1 \rightarrow \alpha Z$ -expansion

High-Z systems: $\alpha Z \sim 1 \rightarrow \text{all orders in } \alpha Z$

Free electron *g* factor Highly charged ions

Highly charged ions

Simple systems: (closed shell(s)) + 1 electron

- H-like: 1s
- Li-like: $(1s)^2 2s$
- B-like: $(1s)^2 (2s)^2 2p$

Zeeman splitting:

$$\Delta E_{
m mag} = \langle - oldsymbol{\mu} {f B}
angle = g \, {oldsymbol{M}} \, \mu_0 \, {oldsymbol{B}}$$

Experiments: past and future

	H-like:	Li-like:	B-like:
Z	1s	(1s) ² 2s	$(1s)^2(2s)^22p$
6	2.001 041 596 (5)		
	2.001 041 590 2 (4)		
8	2.000 047 025 (2)		
14	1.995 348 952 (1)	2.000 889 890 (2)	
18			in progress
			GSI
20	planned	in progress	
	Uni Mainz	Uni Mainz	
up to 92		MPIK, FAIR	

Measurement principle University of Mainz

*m*_e = 0.000 548 579 909 46 (22) u

Häffner et al., PRL (2000); Beier et al., PRL (2002); Verdú et al., PRL (2004)

*m*_e = 0.000 548 579 909 067 (17) u

Sturm et al., Nature (2014)

Measurement principle ARTEMIS experiment at GSI

Laser-microwave double-resonance spectroscopy

von Lindenfels et al., PRA (2013)

QED for bound states Nuclear effects Non-linear effects

QED for bound states

$\alpha \approx 1/137 \ll 1$ — good expansion parameter

QED for bound states Nuclear effects Non-linear effects

QED for bound states

 $\alpha \approx 1/137 \ll 1$ — good expansion parameter

 $1/137 \le \alpha Z \lesssim 1$ — not really

Furry picture of QED:

QED for bound states Nuclear effects Non-linear effects

QED for bound states

QED for bound states Nuclear effects Non-linear effects

QED for bound states

 $\alpha \approx 1/137 \ll 1$ — good expansion parameter

 $1/137 \le \alpha Z \lesssim 1$ — not really

 $1/Z = \alpha/\alpha Z$ — it depends

QED for bound states Nuclear effects Non-linear effects

Bound electron g factor

$$g_{\text{bound}} = g_{\text{L}} \left(A^{(0)}(\alpha Z) + \frac{\alpha}{\pi} A^{(2)}(\alpha Z) + \left(\frac{\alpha}{\pi}\right)^2 A^{(4)}(\alpha Z) + \dots \right)$$

Non-relativistic limit:

$$g_{\rm L} = 1 + \frac{j(j+1) - l(l+1) + 3/4}{2j(j+1)} = \begin{cases} 2 & \text{for } ns \\ 2/3 & \text{for } np_{1/2} \\ 4/3 & \text{for } np_{3/2} \\ \dots \end{cases}$$

Binding effect:

$$B^{(i)}(\alpha Z) = A^{(i)}(\alpha Z) - A^{(i)}(0) \sim (\alpha Z)^2$$

QED for bound states Nuclear effects Non-linear effects

Bound electron g factor Determination of α

$$g_{\text{bound}} = g_{\text{L}}\left(A^{(0)}(\alpha Z) + \frac{lpha}{\pi}A^{(2)}(\alpha Z) + \left(\frac{lpha}{\pi}\right)^2A^{(4)}(\alpha Z) + \dots\right)$$

1s:
$$A^{(0)}(\alpha Z) = \frac{1}{3} \left(1 + 2\sqrt{1 - (\alpha Z)^2} \right)$$

$$\frac{\mathrm{d}g_{1s}}{\mathrm{d}\alpha} \approx -\frac{4\alpha Z^2}{3\sqrt{1-(\alpha Z)^2}} \approx \begin{cases} 0.01 & \text{for } Z = 1\\ 111 & \text{for } Z = 92 \end{cases}$$
$$\frac{\mathrm{d}g_{\mathrm{free}}}{\mathrm{d}\alpha} \approx \frac{1}{\pi} \approx 0.32$$

QED for bound states Nuclear effects Non-linear effects

Bound electron g factor Determination of α

free electron

$\delta \alpha$	_	2π	$\delta g_{\rm free}$
$\overline{\alpha}$	_	α	g _{free}

$$\delta g_{\text{free}}^{\text{exp}} = 3 \times 10^{-13}$$

 $\rightarrow \frac{\delta \alpha}{\alpha} = 3 \times 10^{-10}$

bound electron

$$rac{\delta lpha}{lpha} \sim rac{1}{(lpha Z)^2} rac{\delta g_{1s}}{g_{1s}}$$

$$\delta g_{1s}^{exp} = 1.5 \times 10^{-10}$$

$$\rightarrow \frac{\delta \alpha}{\alpha} = 3 \times 10^{-10}$$

(for Pb, Z = 82)

QED for bound states Nuclear effects Non-linear effects

g factor: leading order

$$g_{\mathrm{D}}(lpha Z) = rac{\kappa(2\kappaarepsilon-1)}{2j(j+1)}$$

$$g_{\mathrm{D}}[1s](\alpha Z) = \frac{2}{3} \left(1 + 2\sqrt{1 - (\alpha Z)^2} \right)$$

$$g_{\rm D}(\alpha Z) \rightarrow g_{\rm D}(0) = g_{\rm L}$$

$$g_{
m L} = 1 + rac{j(j+1) - l(l+1) + 3/4}{2j(j+1)}$$

Self-energy

Yerokhin, Indelicato, Shabaev, PRL(2002); PRA (2004)

Yerokhin, Jentschura, PRA (2010)

Glazov et al., PLA (2006)

QED for bound states Nuclear effects Non-linear effects

Two-electron self-energy

Volotka et al., PRL (2009); Glazov et al., PRA (2010)

QED for bound states Nuclear effects Non-linear effects

One-photon exchange

$$\Delta g_{\text{int}} = \Delta g_{\text{int}}^{(1)} + \Delta g_{\text{int}}^{(2)} + \dots$$

$$\Delta g_{\rm int}^{(1)} = \frac{1}{Z} \, (\alpha Z)^2 \, B(\alpha Z)$$

Shabaev et al., PRA (2002)

QED for bound states Nuclear effects Non-linear effects

Two-photon exchange: 2-electron diagrams

 $\Delta g_{\mathrm{int}} = \Delta g_{\mathrm{int}}^{(1)} + \Delta g_{\mathrm{int}}^{(2)} + \dots$

 $\Delta g_{\rm int}^{(2)} = \frac{1}{7^2} (\alpha Z)^2 C(\alpha Z)$

Wagner et al., PRL (2013); Volotka et al., PRL (2014)

QED for bound states Nuclear effects Non-linear effects

Two-photon exchange: 3-electron diagrams

$$\Delta g_{\rm int} = \Delta g_{\rm int}^{(1)} + \Delta g_{\rm int}^{(2)} + \dots$$

$$\Delta g_{\rm int}^{(2)} = \frac{1}{Z^2} (\alpha Z)^2 C(\alpha Z)$$

Wagner et al., PRL (2013); Volotka et al., PRL (2014)

QED for bound states

Higher-order contributions: beyond 1/Z

$$\Delta g_{
m int} = \Delta g_{
m int}^{(1)} + \Delta g_{
m int}^{(2+)}$$

 $\Delta q_{int}^{(2+)}$: large-scale CI Dirac-Fock-Sturm

Li-like silicon ²⁸Si¹¹⁺

Glazov et al., PRA (2004); Glazov et al., PLA (2006)

Introduction QED for bound states Modern experiments Nuclear effects Theoretical status Non-linear effects

Higher-order contributions: beyond $1/Z^2$

$$\Delta g_{\rm int} = \Delta g_{\rm int}^{(1)} + \Delta g_{\rm int}^{(2)} + \Delta g_{\rm int}^{(3+)}$$

 $\Delta g_{\text{int}}^{(3+)}$: large-scale CI Dirac-Fock-Sturm

Li-like silicon ²⁸Si¹¹⁺

$\Delta g_{\rm int}^{(1)}$	0.000 321 592
$\Delta g_{ m int}^{(2)}$	-0.000 006 876 (1)
$\Delta g_{ m int}^{(3+)}$	0.000 000 085 (22)
$\Delta g_{\rm int}$	0.000 314 801 (22)

Wagner et al., PRL (2013)

 Introduction
 QED for bound states

 Modern experiments
 Nuclear effects

 Theoretical status
 Non-linear effects

 Higher-order contributions:
 Screening potential

$$\Delta g_{ ext{int}} = \Delta g_{ ext{int}}^{(0)} + \Delta g_{ ext{int}}^{(1)} + \Delta g_{ ext{int}}^{(2)} + \Delta g_{ ext{int}}^{(3+)}$$

 $\Delta g_{int}^{(3+)}$: large-scale CI Dirac-Fock-Sturm

Li-like silicon ²⁸Si¹¹⁺

Volotka et al., PRL (2014)

QED for bound states Nuclear effects Non-linear effects

g factor of Li-like silicon (Z=14)

Free electron	Dirac + QED	2.002 319 304
Binding	Dirac	-0.001 745 249
	$QED \sim \alpha$	0.000 001 224 (3)
	$QED \sim \alpha^2$	-0.000 000 001
e ⁻ -e ⁻ interaction	$\sim 1/Z$	0.000 321 592
	$\sim 1/Z^2$	-0.000 006 876 (1)
	$\sim 1/Z^{3+}$	0.000 000 085 (22)
	$\sim lpha/Z^+$	-0.000 000 212 (46)
Nuclear effects	Recoil	0.000 000 039 (1)
	Finite size	0.000 000 003
	Total theory	2.000 889 909 (51)
	Experiment	2.000 889 890 (2)

Wagner et al., PRL (2013)

QED for bound states Nuclear effects Non-linear effects

g factor of Li-like silicon (Z=14)

Free electron	Dirac + QED	2.002 319 304
Binding	Dirac	-0.001 395 613
	$QED \sim \alpha$	0.000 001 224 (3)
	$QED \sim \alpha^2$	-0.000 000 001
e ⁻ -e ⁻ interaction	$\sim 1/Z$	-0.000 033 846
	$\sim 1/Z^2$	-0.000 000 976
	$\sim 1/Z^{3+}$	-0.000 000 005 (6)
	$\sim lpha/Z^+$	-0.000 000 236 (5)
Nuclear effects	Recoil	0.000 000 039 (1)
	Finite size	0.000 000 003
	Total theory	2.000 889 892 (8)
	Experiment	2.000 889 890 (2)

Wagner et al., PRL (2013); Volotka et al., PRL (2014)

Inconductal status Non-Intelligent effects	Introduction Modern experiments Theoretical status	QED for bound states Nuclear effects Non-linear effects
--	--	---

Nuclear effects

$$g_{\text{bound}} = g_{\text{L}} \left(A^{(0)}(\alpha Z) + \frac{\alpha}{\pi} A^{(2)}(\alpha Z) + \left(\frac{\alpha}{\pi}\right)^2 A^{(4)}(\alpha Z) + \dots \right) + \Delta g_{\text{nuc}}$$

Problem: $\Delta g_{nuc} = nuclear \begin{cases} recoil \\ finite size \\ polarization \end{cases}$

Solutions:

• H-like + Li-like ions:

Shabaev et al., PRA (2002)

• H-like + B-like ions (high Z):

Shabaev et al., PRL (2006); Volotka and Plunien, PRL (2014)

 $g'=g_{(1s)^22s}-\xi g_{1s}$

 $g' = g_{(1s)^2(2s)^22p} - \xi g_{1s}$

Introduction QED for Modern experiments Nuclear e Theoretical status Non-linea

Nuclear effects Non-linear effects

Nuclear magnetic moment

Total angular momentum: ${\bf F}={\bf j}+{\bf I}$

$$\mathbf{F} = |j - I|, \dots j + I, \quad M_{\mathbf{F}} = -\mathbf{F}, \dots + \mathbf{F}$$

Total magnetic moment: $\mu = \mu_i + \mu_I$

$$\Delta E_{\text{mag}} = g_F \mu_0 B M_F$$
 if $\Delta E_{\text{mag}} \ll \Delta E_{\text{HFS}}$

$$g_{F} = g_{j} \frac{F(F+1) + j(j+1) - l(l+1)}{2F(F+1)}$$
$$-\frac{m_{e}}{m_{p}} g_{l} \frac{F(F+1) - j(j+1) + l(l+1)}{2F(F+1)}$$

Introduction QED for bound sta Modern experiments Nuclear effects Theoretical status Non-linear effects

Zeeman splitting in B-like ion

Dmitry A. Glazov Bound-electron g-factor and fundamental constants

QED for bound states Nuclear effects Non-linear effects

Non-linear contributions in B

$$E(B) = E^{(0)} + \left[\Delta E^{(1)} = g M \mu_0 B\right] + \left[\Delta E^{(2)} = g^{(2)}(M) (\mu_0 B)^2\right] + \left[\Delta E^{(3)} = g^{(3)}(M) (\mu_0 B)^3\right] + \dots$$

Introduction QED for bound states Modern experiments Nuclear effects Theoretical status Non-linear effects

One-photon exchange

QED correction. Self-energy diagrams

Third-order Zeeman effect

$$\Delta E^{(3)}(B) = g^{(3)}(\mu_0 B)^3 \approx \frac{\langle a|\hat{V}_{\rm m}|b\rangle\langle b|\hat{V}_{\rm m}|a\rangle}{\Delta E_{\rm FS}^2} (\langle b|\hat{V}_{\rm m}|b\rangle - \langle a|\hat{V}_{\rm m}|a\rangle)$$
$$\approx 4.3 \cdot 10^{-9} \times \Delta E^{(1)}(B)$$

 $a = 2p_{1/2}, \quad b = 2p_{3/2} \quad \text{or} \quad a = 2p_{3/2}, \quad b = 2p_{1/2}$

g factor of HCI is available for both

- high-precision measurements
- accurate calculations
- \rightarrow Test of theory: bound-state QED
- \rightarrow Determination of
 - α fine structure constant
 - m_e electron mass (in a.u.)
 - μ_N nuclear magnetic moment
 - R_N nuclear charge radius