

Phenomenology of (open and hidden) charmed mesons in a chiral symmetric model

Walaa I. Eshraim

in collaboration with

Francesco Giacosa and Dirk H. Rischke

FAIRness 2014, Salerno, Italy, Sept. 24, 2014

Introduction

- Quantum Chromodynamics: QCD
- Symmetries of the QCD Lagrangian.
 - if all quark massless then we have chiral $U(4)_r \times U(4)_l$ symmetry

$$U(N_f)_r \times U(N_f)_l = SU(N_f)_r \times SU(N_f)_l \times U(1)_V \times U(1)_A$$

- Spontaneous breaking of chiral symmetry by quark condensates
- Explicit breaking of a global chiral symmetry by quark masses and chiral anomaly
- -Effective chiral models of QCD.
- Charm quark???

DAA

• Linear sigma model with vector and axial vector degrees of freedom.

• Inclusion of the charmed mesons into the linear sigma model (extended Linear Sigma Model - eLSM).

• Extension from low-energy to high-energy mesons.

• Study of the model for $T = \mu = 0$ (spectroscopy in vacuum).

Fields in the model

• Mesons: quark-antiquark states ($q \overline{q}$)

 $4N_{f}^{2}+2\,fields$

• For $N_f = 4$ there are 66 mesons: 64 quark-antiquark fields + one pseudoscalar glueball \tilde{G} +one scalar glueball G

W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]]; W. I. Eshraim, F. Giacosa, and D. H. Rischke, [arXiv:1405.5861 [hep-ph]].

GOETH

UNIVERSITA

 $\overline{n}n \propto \overline{u}u + \overline{d}d$

Including charm degree of freedom

1) Scalar fields:

2) Pseudoscalar fields

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\eta_N + \pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & \bar{K}^0 & \eta_S \end{pmatrix}$$

 $\implies P = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} (\eta_N + \pi^0) & \pi^+ & K^+ & D^0 \\ \pi^- & \frac{1}{\sqrt{2}} (\eta_N - \pi^0) & K^0 & D^- \\ K^- & \overline{K}^0 & \eta_S & D_S^- \\ \overline{D}^0 & D^+ & D_S^+ & \eta_c \end{pmatrix}$

 $\eta = \eta_N \cos \phi + \eta_S \sin \phi$ [W. I. Eshraim; S. Janowski; F. Giacosa; D. H. Rischke. $\eta' = -\eta_N \sin \phi + \eta_S \cos \phi$ with mixing angle $\phi = -44.6^\circ$ Phys.Rev. D87 (2013) 054036 [arXiv: 1208.6474 [hep-ph]]. The multiplet of the scalar and pseudoscalar quark-antiquark states: $\Phi = S + iP$

TIMUTEDO

3) Vector fields:

4) Axial vector fields:

$$A^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N}^{\mu} + a_{1}^{\mu 0}}{\sqrt{2}} & a_{1}^{\mu +} & k_{1}^{\mu +} \\ a_{1}^{\mu -} & \frac{f_{1N}^{\mu} - a_{1}^{\mu 0}}{\sqrt{2}} & k_{1}^{\mu 0} \\ k_{1}^{\mu -} & \frac{\sqrt{2}}{k_{1}^{\mu 0}} & f_{1S}^{\mu} \end{pmatrix} \implies A^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} (f_{1,N} + a_{1}^{0}) & a_{1}^{+} & K_{1}^{+} & D_{1}^{0} \\ a_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & D_{1}^{-} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & \frac{1}{\sqrt{2}} \\ K_{1}^{-} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & K_{1}^{0} & \frac{1}{\sqrt{2}} (f_{1,N} - a_{1}^{0}) & \frac{1}{\sqrt{$$

The left-handed matrix: $L^{\mu} = V^{\mu} + A^{\mu}$ and the right-handed matrix: $R^{\mu} = V^{\mu} - A^{\mu}$ W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]]; W. I. Eshraim; Giacosa; and D. H. Rischke; [arXiv:1405.5861 [hep-ph]] W. I. Eshraim

Linear Sigma Model Lagrangian with (axial-)vector mesons

uuu

$$\mathcal{L} = \mathcal{L}_{dil} + \text{Tr}[(D^{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] - m_0^2 \left(\frac{G}{G_0}\right)^2 \text{Tr}(\Phi^{\dagger}\Phi) - \lambda_1[\text{Tr}(\Phi^{\dagger}\Phi)]^2 - \lambda_2 \text{Tr}(\Phi^{\dagger}\Phi)^2 + \text{Tr}\left\{\left[\left(\frac{G}{G_0}\right)^2 \frac{m_1^2}{2} \bigoplus_{i=1}^{\infty} \left[(L^{\mu})^2 + (R^{\mu})^2\right]\right\} + \text{Tr}[H(\Phi + \Phi^{\dagger})] - 2 \text{Tr}[\varepsilon \Phi^{\dagger}\Phi] \\- \frac{1}{4} \text{Tr}[(L^{\mu\nu})^2 + (R^{\mu\nu})^2] + c(\det \Phi - \det \Phi^{\dagger})^2 \oplus i\tilde{c}\tilde{G}\left(\det \Phi - \det \Phi^{\dagger}\right) + i\frac{g_2}{2}\{\text{Tr}(L_{\mu\nu}[L^{\mu}, L^{\nu}]) \\+ \frac{h_1}{2} \text{Tr}(\Phi^{\dagger}\Phi)Tr[(L^{\mu})^2 + (R^{\mu})^2] + h_2 \text{Tr}[(\Phi R^{\mu})^2 + (L^{\mu}\Phi)^2] + 2h_3 \text{Tr}(\Phi R_{\mu}\Phi^{\dagger}L^{\mu}) + \text{Tr}(R_{\mu\nu}[R^{\mu}, R^{\nu}])\} + \dots,$$
where \mathcal{L}_{dil} is the dilaton Lagrangian.

DAAD

$$\mathcal{L}_{dil} = \frac{1}{2} (\partial_{\mu} G)^2 - \frac{1}{4} \frac{m_G^2}{\Lambda^2} \left(G^4 \ln \frac{G^2}{\Lambda^2} - \frac{G^4}{4} \right)$$

D.Parganlija, P.Kovacs, G.Wolf, F.Giacosa and D.H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph]]; W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]]. W. I. Eshraim

Spontaneous Symmetry Breaking (SSB)

Shifting the fields

$$G \to G + G_0, \quad \sigma_N \to \sigma_N + \phi_N, \quad \sigma_S \to \sigma_S + \phi_S$$

where,
$$\phi_N = Z_\pi f_\pi \qquad \phi_S = \frac{2Z_k f_k - \phi_N}{\sqrt{2}}$$

D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph].

For $N_f = 4$ new shift γ_f

$$\chi_{C0} \to \chi_{C0} + \phi_C$$

where

$$\phi_C = \frac{2Z_D f_D - \phi_N}{\sqrt{2}} = \sqrt{2}Z_{D_s} f_{D_s} - \phi_S = \frac{Z_{\eta_C} f_{\eta_C}}{\sqrt{2}}$$

W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]]; W. I. Eshraim, F. Giacosa and D. H. Rischke, , arXiv:1405.5861 [hep-ph]].

There are 29 eqs. of square masses of mesons with 15 unknown parameters.

W. I. Eshraim

DAAD

Parameters

The values of the $N_f = 3$ parameters :

Parameter	Value	Parameter	Value	
m_1^2	$0.413 \times 10^6 \text{ MeV}^2$	m_0^2	$-0.918 \times 10^6 \mathrm{MeV^2}$	[]
$\phi_C^2 c/2$	$450 \cdot 10^{-6} \text{ MeV}^{-2}$	δ_S	$0.151 \times 10^6 \mathrm{MeV^2}$	V F
g_1	5.84	h_1	0	() [
h_2	9.88	h_3	3.87	
ϕ_N	$164.6~{ m MeV}$	ϕ_S	$126.2 { m ~MeV}$	
λ_1	0	λ_2	68.3	

[D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph]].

$$\lambda \chi^2 / d.o.f = 1.23$$

The new three parameters for $N_f = 4$ are $\phi_C, \delta_C, \varepsilon_C$. By fit with $\chi^2 / d.o.f = 1$:

$$\phi_C = (176 \pm 28) \text{ MeV}, \ \delta_C = (3.91 \pm 0.36) \times 10^6 \text{ MeV}^2, \ \varepsilon_C = (2.23 \pm 0.71) \times 10^6 \text{ MeV}^2$$

[W. I. Eshraim, F. Giacosa and D. H. Rischke, , arXiv:1405.5861 [hep-ph]].

Results

Masses of light mesons:

Observable	our Value [MeV]	Experimental Value [MeV]
$m_{f_{1N}}$	1186	1281.8 ± 0.6
m_{a_1}	1185	1230 ± 40
$m_{f_{1S}}$	1372	1426.4 ± 0.9
m_{K^*}	885	891.66 ± 0.26
m_{K_1}	1281	1272 ± 7
m_{σ_1}	1362	(1200-1500)-i(150-250)
m_{a_0}	1363	1474 ± 19
m_{σ_2}	1531	1720 ± 60
m_{w_N}	783	782.65 ± 0.12
m_{w_S}	975	1019.46 ± 0.020
$m_{ ho}$	783	775.5 ± 38.8
m_{η}	509	547.853 ± 0.024
m_{π}	141	139.57018 ± 0.00035
$m_{\eta'}$	962	957.78 ± 0.06
$m_{K_{0}^{*}}$	1449	1425 ± 50
m_K	485	493.677 ± 0.016

W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph]; D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Phys. Rev. D 87 (2013) 014011 [arXiv:1208.0585 [hep-ph].

Masses of (open and hidden) charmed mesons:

Resonance	Quark content	J^P	Our Value [MeV]	Experimental Value [MeV]
D^0	$uar{c},ar{u}c$	0^{-}	1981 ± 73	1864.86 ± 0.13
D_S^{\pm}	$sar{c},ar{s}c$	0^{-}	2004 ± 74	1968.50 ± 0.32
$\eta_c(1S)$	$c\bar{c}$	0^{-}	2673 ± 118	2983.7 ± 0.7
$D_0^*(2400)^0$	$uar{c},ar{u}c$	0^{+}	2414 ± 77	2318 ± 29
$D_{S0}^{*}(2317)^{\pm}$	$sar{c},ar{s}c$	0^{+}	2467 ± 76	2317.8 ± 0.6
$\chi_{c0}(1P)$	$c\bar{c}$	0^{+}	3144 ± 128	3414.75 ± 0.31
$D^*(2007)^0$	$uar{c},ar{u}c$	1^{-}	2168 ± 70	2006.99 ± 0.15
D_s^*	$sar{c},ar{s}c$	1-	2203 ± 69	2112.3 ± 0.5
$J/\psi(1S)$	$c\bar{c}$	1-	2947 ± 109	3096.916 ± 0.011
$D_1(2420)^0$	$uar{c},ar{u}c$	1^{+}	2429 ± 63	2421.4 ± 0.6
$D_{S1}(2536)^{\pm}$	$sar{c},ar{s}c$	1^{+}	2480 ± 63	2535.12 ± 0.13
$\chi_{c1}(1P)$	$c\bar{c}$	1^{+}	3239 ± 101	3510.66 ± 0.07

W. I. Eshraim, F. Giacosa and D. H. Rischke, [arXiv:1405.5861 [hep-ph]]; W. I. Eshraim, PoS QCD -TNT-III (2014) 049 [arXiv:1401.3260 [hep-ph].

W. I. Eshraim

DAAD

Mass difference and decay constants

The mass difference of the squared charmed (axial-)vector mesons:

mass difference	theoretical value MeV^2	experimental value MeV^2
$m_{D_1}^2 - m_{D^*}^2$	$(1.2 \pm 0.6) \times 10^6$	$1.82 imes 10^6$
$m^2_{\chi_{C1}} - m^2_{J/\psi}$	$(1.8 \pm 1.3) \times 10^{6}$	$2.73 imes 10^6$
$m_{D_{S1}}^2 - m_{D_S^*}^2$	$(1.2 \pm 0.6) \times 10^6$	$1.97 imes 10^6$

DAAD

GOETH

UNIVERSITÄ

Weak decay constant of D, Ds, and f_{η_C} .

$$f_D = (254 \pm 17) \text{ MeV}$$
, $f_{D_S} = (261 \pm 17) \text{ MeV}$, $f_{\eta_C} = (222 \pm 28) \text{ MeV}$
Exp. value = 206.7 ± 8.9]_{MeV}, [Exp. value = 260.5 ± 5.4] _{MeV}, [Exp. value = 335 ± 75] MeV

W. I. Eshraim, F. Giacosa and D. H. Rischke, arXiv:1405.5861 [hep-ph].

Decay widths of open charmed mesons:

Decay Channel	Theoretical results [MeV]	Experimental results [MeV] (from [6])
$D_0^*(2400)^0 \to D\pi$	139^{+243}_{-114}	$D^+\pi^-$ seen; full width $\Gamma = 267 \pm 40$
$D_0^*(2400)^+ \to D\pi$	51^{+182}_{-51}	$D^+\pi^0$ seen; full width: $\Gamma = 283 \pm 24 \pm 34$
$D^{*}(2007)^{0} \to D^{0}\pi^{0}$	0.025 ± 0.003	seen; < 1.3
$D^*(2007)^0 \to D^+\pi^-$	0	not seen
$D^*(2010)^+ \to D^+ \pi^0$	$0.018^{+0.002}_{-0.003}$	0.029 ± 0.008
$D^*(2010)^+ \to D^0 \pi^+$	$0.038_{-0.004}^{+0.005}$	0.065 ± 0.017
$D_1(2420)^0 \rightarrow D^*\pi$	65^{+51}_{-37}	$D^{*+}\pi^{-}$ seen; full width: $\Gamma = 27.4 \pm 2.5$
$D_1(2420)^0 \rightarrow D^0 \pi \pi$	0.59 ± 0.02	seen
$D_1(2420)^0 \to D^+ \pi^- \pi^0$	$0.21^{+0.01}_{-0.015}$	-
$D_1(2420)^0 \to D^+\pi^-$	0	not seen; $\Gamma(D^+\pi^-)/\Gamma(D^{*+}\pi^-) < 0.24$
$D_1(2420)^+ \rightarrow D^*\pi$	65^{+51}_{-36}	$D^{*0}\pi^+$ seen; full width: $\Gamma = 25 \pm 6$
$D_1(2420)^+ \rightarrow D^+\pi\pi$	0.56 ± 0.02	seen
$D_1(2420)^+ \to D^0 \pi^0 \pi^+$	0.22 ± 0.01	-
$D_1(2420)^+ \to D^0 \pi^+$	0	not seen; $\Gamma(D^0\pi^+)/\Gamma(D^{*0}\pi^+) < 0.18$

W. I. Eshraim, F. Giacosa and D. H. Rischke, arXiv:1405.5861 [hep-ph].

GOETHE

UNIVERSITÄ

• The decay widths of charmonium state depend on the parameters λ_1 and h_1 . Using fit including the decay widths of charmonium state χ_{C0} , we obtain

 $\lambda_1 = -0.16$ and $h_1 = 0.046$.

W. I. Eshraim, F. Giacosa and D. H. Rischke, in preparation, preliminary!

Mixing matrix of the three scalar fields (σ_N , σ_s , G)

$$\begin{pmatrix} f_0(1370) \\ f_0(1500) \\ f_0(1710) \end{pmatrix} = \begin{pmatrix} 0.94 & -0.17 & 0.29 \\ 0.21 & 0.97 & -0.12 \\ -0.26 & 0.18 & 0.95 \end{pmatrix} \begin{pmatrix} \sigma_N \equiv (\overline{u}u + \overline{d}d)/\sqrt{2} \\ \sigma_S \equiv \overline{s}s \\ G \equiv gg \end{pmatrix}$$

where *G* is a scalar glueball.

S. Janowski, F. Giacosa and D. H. Rischke, in preparation.

Decay widths of hidden charmed mesons:

1) Decay widths of (axial-)vector charmonium states:

$$\Gamma_{J/\psi} = 0$$
 and $\Gamma_{\chi_{c1}} = 0$

2) Decay widths of scalar charmonium state (η_c):

W. I. Eshraim, F. Giacosa and D. H. Rischke, in preparation preliminary!

Decay Channel	theoretical result [MeV]	Experimental result [MeV]
$\Gamma_{\eta_c \to \overline{K}_0^* K}$	0.01	-
$\Gamma_{\eta_c \to a_0 \pi}$	0.01	-
$\Gamma_{\eta_c \to f_0(1370)\eta}$	0.00018	-
$\Gamma_{\eta_c \to f_0(1500)\eta}$	0.006	-
$\Gamma_{\eta_c \to f_0(1710)\eta}$	0.000032	-
$\Gamma_{\eta_c \to f_0(1370)\eta'}$	0.027	-
$\Gamma_{\eta_c \to f_0(1500)\eta'}$	0.024	-
$\Gamma_{\eta_c \to f_0(1710)\eta'}$	0.0006	-
$\Gamma_{\eta_c \to \eta \eta \eta}$	0.052	-
$\Gamma_{\eta_c \to \eta' \eta' \eta'}$	0.0023	-
$\Gamma_{\eta_c \to \eta' \eta \eta}$	0.44	-
$\Gamma_{\eta_c \to \eta' \eta' \eta}$	0.0034	
$\Gamma_{\eta_c \to \eta K \overline{K}}$	0.15	0.32 ± 0.17
$\Gamma_{\eta_c \to \eta' KK}$	0.41	
$\Gamma_{\eta_c \to \eta \pi \pi}$	0.12	$0.54{\pm}0.18$
$\Gamma_{\eta_c \to \eta' \pi \pi}$	0.08	$1.3 {\pm} 0.0.6$
$\Gamma_{\eta_c \to KK\pi}$	0.095	-

Decay width of η_C into a pseudoscalar glueball

DAAD

Decay width of χ_{c0}

W. I. Eshraim

3) Decay widths of a pseudoscalar charmonium state (χ_{c0}):

Decay Channel	theoretical result [MeV]	Experimental result [MeV]
$\Gamma_{\chi_{c0} \to a_0 a_0}$	0.004	-
$\Gamma_{\chi_{c0} \to k_1 \overline{K}_1}$	0.005	-
$\Gamma_{\chi_{c0} \to \eta\eta}$	0.022	0.031 ± 0.0039
$\Gamma_{\chi_{c0} \to \eta' \eta'}$	0.02	0.02 ± 0.0035
$\Gamma_{\chi_{c0} \to \eta \eta'}$	0.004	< 0.0024
$\Gamma_{\chi_{c0}\to K^*K_0^*}$	0.00007	-
$\Gamma_{\chi_{c0}\to\rho\rho}$	0.01	-
$\Gamma_{\chi_{c0} \to f_0(1370) f_0(1370)}$	0.005	< 0.003
$\Gamma_{\chi_{c0} \to f_0(1500) f_0(1500)}$	0.004	< 0.0005
$\Gamma_{\chi_{c0} \to f_0(1370) f_0(1500)}$	0.000004	< 0.001
$\Gamma_{\chi_{c0} \to f_0(1370) f_0(1710)}$	0.0003	0.0069 ± 0.004
$\Gamma_{\chi_{c0} \to f_0(1500) f_0(1710)}$	0.00004	< 0.0007
$\Gamma_{\chi_{c0}\to K_0^*K\eta}$	0.008	-
$\Gamma_{\chi_{c0}\to K_0^*K\eta'}$	0.004	-
$\Gamma_{\chi_{c0} \to f_0(1370)\eta\eta}$	0.0004	-
$\Gamma_{\chi_{c0} \to f_0(1500)\eta\eta}$	0.003	-
$\Gamma_{\chi_{c0}\to f_0(1370)\eta'\eta'}$	0.0027	-
$\Gamma_{\chi_{c0} \to f_0(1370)\eta\eta'}$	0.000089	-
$\Gamma_{\chi_{c0} \to f_0(1500)\eta\eta'}$	0.011	-
$\Gamma_{\chi_{c0} \to f_0(1710)\eta\eta}$	0.00008	-
$\Gamma_{\chi_{c0}\to f_0(1710)\eta\eta'}$	0.00003	-

Decay Channel	theoretical result [MeV]	Experimental result [MeV]
$\Gamma_{\chi_{c0}\to\overline{K}_0^{*0}K_0^{*0}}$	0.01	0.01 ± 0.0047
$\Gamma_{\chi_{c0} \to K^- K^+}$	0.059	$0.061 {\pm} 0.007$
$\Gamma_{\chi_{c0}\to\pi\pi}$	0.089	$0.088 {\pm} 0.0092$
$\Gamma_{\chi_{c0}\to\overline{K}^{*0}K^{*0}}$	0.0175	$0.017 {\pm} 0.0072$
$\Gamma_{\chi_{c0} \to ww}$	0.01	0.0099 ± 0.0017
$\Gamma_{\chi_{c0} \to \phi \phi}$	0.004	0.0081 ± 0.0013
$\Gamma_{\chi_{c0}\to k_1^+K^-}$	0.005	0.063 ± 0.0233

W. I. Eshraim, F. Giacosa and D. H. Rischke, in preparation, preliminary!

Conclusions and Outlook

- 1. Linear sigma model with $N_f = 4$ and vector and axial-vector mesons.
- 2. Masses of (open and hidden) charmed mesons.
- 3. Charm-anticharm condensate and decay constants.
- 4. Decay widths of (open and hidden) charmed mesons.

I. Light tetraquark nonet and its extension to $N_f = 4$ (on going). II. Mixing of axial- and pseudo-vectors charmed mesons (on going). III. Inclusion of isospin breaking (on going). IV. Extension to non-zero temperature and density.