TRIGA-SPEC: Status of the MATS and LaSpec prototype systems for the FAIR facility

Thomas Beyer For the TRIGA-SPEC collaboration FAIRNESS, 25.09.2014

Content:

- Aims of MATS and LaSpec
- The TRIGA-SPEC experiment in Mainz
- Status and Outlook

Bundesministerium für Bildung und Forschung

MATS and LaSpec: Aims

 the examination of the atomic nucleus opens the door to various fields of physics

MATS and LaSpec at FAIR

Fig. 1. End of the Low Energy Beam line of the Super FRS at the future FAIR facility.

 MATS and LaSpec at the future FAIR facility are part of the NUSTAR collaboration

MATS: precise Measurements on very short-lived nuclei using an Advanced Trapping System for highly-charged ions LaSpec: Laser Spectroscopy on very short-lived nuclei

The TRIGA Mark II reactor in Mainz

- Training, Research,
 Isotopes, General Atomic
- steady state mode: 100 kW_{therm}
- pulsed mode:
 250 MW for 30ms
- four horizontal beam ports allow access to the reactor core

TRIGA reactor: production rates

neutron-induced fission of an actinide target, e.g. ²³⁵U or ²⁴⁹Cf

Prototype systems at TRIGA-SPEC

Extraction of the fission products

Ionization of the fission products

- a skimmer strips away the light carrier gas
- the carrier particles enter the ionizer (efficiency ~15%)
- they break up and release the fission products

Ionization of the fission products

- a skimmer strips away the light carrier gas
- the carrier particles enter the ionizer (efficiency ~15%)
- they break up and release the fission products

- the dipole magnet separates ions via $\frac{m}{2}$
- by using a small (vertical) slit after the magnet, only one isobaric line passes through

Mass separation in a dipole magnet

- the dipole magnet separates ions via $\frac{m}{a}$
- by using a small (vertical) slit after the magnet, only one isobaric line passes through

Tools for beam diagnosis

RFQ cooler/buncher: principle

х

 $-U(z) + V_{\rm RF} \sin(2\pi v_{\rm RF} t)$

a radio-frequency quadrupole (RFQ) is a linear Paul trap

RFQ cooler/buncher: operation modes

without buffer gas

with buffer gas

(phosphor screen captures)

all the time...

once: short bright pulse

TRIGA-SPEC: experiments

Ion beam preparation transfer line

 provide bunches of cooled radioactive ions

Collinear laser spectroscopy

- probe the properties of atoms and ions through the interaction of their electronic shell with an applied laser field
- Isotopic shifts in the Ca D2 line¹

Penning-trap mass spectrometer

- high-precision mass measurements
- Cd, Pd masses and Q-values²
- Am, Pu, Cf masses³

¹in preparation

²Smorra et al, Phys. Rev. C, 85:027601 (2012)

³Eibach et al, Phys. Rev. C, 89:064318 (2014)

Penning-trap mass spectrometry

Principle idea:

measure the mass of an ion by its cyclotron frequency in a magnetic field **B**

focusing electrodes

endcap electrodes

The double Penning trap of TRIGA-TRAP

precision trap

Penning-trap mass spectrometry

Time-of-flight ion cyclotron resonance (TOF-ICR):

- the ions' cyclotron frequency is excited
- after ejection, excited ions receive an extra "kick"
- excited ions show the shortest TOF

Mapping the N=152 deformed shell closure

Collinear laser spectroscopy

- stray light reduction (mirror geometry)
- background suppression (ion-photon coincidence detection)
- line width reduction (electrostatic acceleration)

Commissioning of the ion beam preparation

Ca⁺ bunch is probed by time-resolved resonant laser spectroscopy at 397nm

the result is the longitudinal emittance ${\cal E}$ (in units of eV*µs)

Optimization of the cooling time

Counts

1

MaX-Planck-Institut Für Kernphysik

max-Planck-Institut Für Kernphysik

Outlook

TRIGA-SPEC is fully connected and functional \ö/

The next steps include:

- Measurement of a radioactive nuclide (e.g. ⁹¹Rb)
- Efficiency improvements to reach the rare candidates
 - Bigger actinide target (12-fold increase in production)
 - Aerodynamic lens to improve skimmer efficiency (15% -> 65%)
- Implementation of new techniques
 - Plasma ion source for the ionization of refractories
 - FT-ICR detection at TRIGA-TRAP
 - Two-step laser excitation at TRIGA-LASER

Thank you for listening!

energy

Group members:

Christian Smorra Martin Eibach Szilard Nagy Simon Kaufmann Christian Gorges Christopher Geppert

Jessica Grund **Dennis Renisch**

Fabian Schneider Michael Block Klaus Eberhardt

Prof. Klaus Blaum Prof. Wilfried Nörtershäuser Prof. Christoph E. Düllmann

21 22 23 24 25 18 19 20 time /us

Funding:

Bundesministerium für Bildung und Forschung

JOHANNES GUTENBERG UNIVERSITAT

