

Photon emission within a quark meson model

<u>F. Wunderlich</u> and B. Kämpfer FAIRNESS 2014

QCD = theory of strong interactions (success of quark model, cross sections, hadron masses from lattice,...)

[textbook of YNDURAIN] [DURR *et al.* Science 322 (2008)]

[CBM Physics book]

Open questions: nature and properties of sQGP, mass generation, chiral + deconfinement phase transition, ...

large scale experiments running or under construction (RHIC, LHC, FAIR, NICA,...)

one particular question: existence, position and properties of a CP

figure from: [Wikipedia.org]

Member of the Helmholtz Association

Screenshots from: [http://www.msm.cam.ac.uk/doitpoms/tlplib/solid-solutions/videos/laser1.mov]

Member of the Helmholtz Association

HIC create region of hot and dense QCD matter

- \rightarrow explosion
- \rightarrow detection

most particles: pions created at the edge of the fireball

want: information from the hot interior

one way: electromagnetic probes

Member of the Helmholtz Association

Remark on photons from HIC

[RAPP,WAMBACH Adv.Nucl.Phys. 25 (2000)]

many sources of photons:

- hard photons from parton collisions
- thermal photons from the hydro stage
- decay of hadrons

this work: focus on medium (equilibrium) properties, i.e. emissivity

The qm-model

Our question: "Are there em signatures charakteristic for a CP?"

Due to universality: replace in a 1st step QCD by effective model with appropriate symmetries: qm-model

[SCHAEFER, WAMBACH Nucl.Phys. A757 (2005)] [SCAVENIUS *et al.* Phys.Rev. C64 (2001)]

$$L_{qmy} = L_{qm} + L_{em} + L_y$$

 $L_{\gamma} = \frac{1}{\Delta} F F_{\rho\kappa}$

$$L_{qm} = \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - g (\sigma + i \gamma^{5} \vec{\tau} \vec{\pi})) \psi$$

+ $\frac{1}{2} (\partial_{\nu} \sigma^{\nu})^{2} + \frac{1}{2} (\partial_{\rho} \vec{\pi}^{\rho})^{2} + \frac{\lambda}{4} (\sigma^{2} + \vec{\pi}^{2} - \nu^{2})^{2} - H \sigma$
$$L_{em} = -eq_{f} \overline{\psi} \gamma^{\mu} A_{\mu} \psi + \frac{1}{2} e \pi^{+} \pi^{-} A_{\nu} A^{\nu} + \frac{1}{2} e \pi A_{\nu} \pi^{+} \pi^{-} (p_{+}^{\nu} - p_{-}^{\nu})$$

Member of the Helmholtz Association

Photon emission - general remarks

photon rate essentially given by the imaginary part of the retarded photon self energy [Textbook of KAPUSTA and GALE]

$$\omega \frac{d^3 R}{dk^3} \sim \operatorname{Im} \Pi_{R_{\nu}}^{\nu}(k^{\nu}; T, \mu) n_B(p^{\nu} u_{\nu}; T, \mu)$$

two important restrictions:

- size: $\lambda_{\mathrm{m.f.p.}}^{\gamma} \gg r_{\mathrm{fireball}} \gg \lambda_{\mathrm{m.f.p.}}^{\mathrm{strong}}$
- (local) thermal equilibrium

HIC: OK (success of hydro)

Member of the Helmholtz Association

Separation of scales

strong interaction: much shorter timescale, much higher energy scale (compared to em)

- \rightarrow separation of scales
- → em interaction "sees" only particles dressed by strong interaction em interaction is small correction to thermodynamic properties
- \rightarrow for thermodynamic properties: ignore em contribution
- → for photon emission: insert quasiparticle properties (e.g. masses) into formulas

Mean field analysis

qualitative correct results with simple approx

In this context:

- setting meson fields to their expectation values. Expectation value minimizes free energy

 $\Omega(T,\mu) \equiv \widetilde{\Omega}(\langle \sigma \rangle, \langle \pi \rangle, T,\mu)$

Curvatures of free energy at minimum \rightarrow masses

$$m_{\varphi} = \frac{\partial^2 \widetilde{\Omega}(\varphi, T, \mu)}{\partial \varphi^2}|_{\varphi = \langle \varphi \rangle}$$

- exactly solving the remaining fermionic path integral
- including photons: like QED

Member of the Helmholtz Association

Mean field analysis - drawbacks

no dynamic mesons

- \rightarrow missing contribution to pressure
- → only photon-quasiquark-coupling, no pion-photon-vertex

Self consistent method to introduce (small) fluctuations

detailed description:

[BOWMAN, KAPUSTA: Phys.Rev. C79 (2009)], [BOWMAN, diss.] [MOCSY *et al.* Phys.Rev. C70 (2004)]

- integrate out quarks
- quadratic approximation for the remaining effective mesonic potential
- solve self consistency relations for meson masses

Member of the Helmholtz Association

model parameters fixing: $m_{\sigma}^{\text{vac}} = 700 \,\text{MeV}$ $m_{\pi}^{\rm vac} = 135 \,{\rm MeV}$ **Thermodynamics - MFA** $m_a^{\rm vac}$ = 312 MeV f_{π} = 93 MeV exploratory study: as simple as possible \rightarrow MFA m_q/MeV T/MeV T/MeV μ_a/MeV μ_a/MeV m_{σ}/MeV m_{π}/MeV T/MeV T/MeV

 μ_a/MeV

Falk Wunderlich | institute for radiation physics | division for hadron physics | www.hzdr.de

Ō

 μ_q /MeV

Member of the Helmholtz Association

Thermodynamics - MFA

exploratory study: as simple as possible \rightarrow MFA

Thermodynamics – linearized fluctuations

Character of the PT

Member of the Helmholtz Association

Influence of meson fluctuations

Member of the Helmholtz Association

The retarded photon self energy

leading order

After Matsubara summation:

$$\operatorname{Im} \operatorname{min} + \ldots - \frac{1}{(2\pi)^3} \int \frac{d^3 p}{2E_p} n_F(E_p) n_F(\omega - E_p) \times \left| \right\rangle^2 + \ldots$$

This looks exactly like kinetic theory!

So: forget photon propagator! Just specify all photon producing processes and calculate momentum integrals.

0

Interpretation

annihilation:

Compton scattering:

application of optical theorem

$$\operatorname{Im} \Pi = C \times \sum |M(i \rightarrow f + \gamma)|^2$$

Member of the Helmholtz Association

Photon emission MFA:

only quarks emitt photons

QED-like rates

leading order:

no Compton-contrib. (photons are not in equilib.)

Photon emission, lin. fluct:

- Quarks and pions emit photons
- Compton processes possible

Member of the Helmholtz Association

Photon emission lin. fluct:

Member of the Helmholtz Association

Photon emission, lin. fluct:

LO with σ :

Member of the Helmholtz Association

Photon emission lin. fluct:

Member of the Helmholtz Association

Photon rates

Member of the Helmholtz Association

Member of the Helmholtz Association

Summary and outlook

calculated thermodynamics and photon emissivity to 1st order within the QMM (linear sigma model with quarks)

MFA + beyond MFA

more fluctuations / FRG

folding with hydro evolution

Member of the Helmholtz Association

Thank you for your attention!

Member of the Helmholtz Association

Fluctuation measures

Member of the Helmholtz Association