

Overview of the Silicon Tracking System for the CBM experiment

P. Larionov for the CBM collaboration

FAIRNESS 2014 22-27 September, Vietri sul Mare, Italy

The CBM experiment

 comprehensive program to explore the phase diagram of strongly interacting matter at highest net baryon densities and moderate temperatures:

"Compressed Baryonic Matter"

- heavy-ion collisions from 2 45 GeV/nucleon at FAIR;
 - SIS100
 - 2 to 14 GeV/nucleon for nuclei;
 - up to 29 GeV for protons;
 - SIS300:
 - up to 45 GeV/nucleon for nuclei;
 - up to 90 GeV for protons;
 - beam extracted from SIS100/300 to the CBM experimental hall

Explore the QCD phase diagram

How to probe dense matter?

- Need penetrating probes sensitive to the early, high-density phase of fire ball evolution;
- CBM: di-lepton decays of light vector mesons and charm
 - light vector mesons

 $\rho, \omega, \Phi \rightarrow e^+ e^- / \mu^+ \mu^-$

- charmonium J/ $\Psi, \Psi' \rightarrow e^+ e^- / \mu^+ \mu^-$

- open charm $D^{+-}, D^{0} \rightarrow K + \pi$ $K + \pi \pi$ - Strangeness;

- Rare probes! Require:
 - Reaction rate up to 10 MHz (J/Psi)
 - Good particle ID

Experimental challenges

The CBM experimental setup

STS design constrains

High interaction rates

 10⁵ – 10⁷ Au+Au collisions/ sec.

Fast and radiation hard detectors

• up to $10^{14} n_{eq}/cm^2$

Free streaming read-out

- time-stamped detector data
- high speed data acquisition

On-line event reconstruction

- powerful computing farm
- 4-dimensional tracking
- software triggers

~700 charged particles per event

The Silicon Tracking System

- 8 tracking stations between 30 cm and 1m;
- Located in 1 Tm dipole magnet;
- Built from double-sided silicon micros trip sensors in 3 sizes;
- Arranged in modules on a small number of different detector ladders;
- Readout electronics outside of the physics aperture;
- Momentum resolution $\Delta p/p=1\%$;
- Track reconstruction efficiency ~95%.

STS Module

Module := building block of ladders, smallest assembled functional unit

896 modules in 25 types, differing in numbers and size of sensors, and cable lengths

Double-sided silicon strip sensors

- Double-sided structure;
- 1024 strips per side;
- 58 µm pitch (distance b/w two strips);
- Stereo angle front-back side 7.5°;
- Integrated AC-coupled readout;
- Radiation tolerant up to $1 \times 10^{14} n_{eq}/cm^2$;
- Three different sizes;
- Around 1200 will be produced

edge of the sensor under microscope

Detector performance simulation

- Detailed, realistic detector model based on tested prototype components;
- CbmRoot simulation framework;
- Using Cellular Automaton / Kalman Filter algorithms.

track reconstruction efficiency

momentum resolution

Au+Au @ 25 AGeV (SIS 300)

STS Perfomance: (multi strange) hyperon production

STS Perfomance: open charm

Sensor related projects, in which I'm involved in

Sensor characterization and quality assurance

Bulk tests:

1) Visual inspection

- to check scratches and defects;

2) IV-scan

- to check overall sensor health;

3) CV-scan

- to determine the depletion voltage;

Detailed sensor quality assurance

Strip de	efects:	Fi	Master-Main.vi le Edit View Proj Re 20 1	ect Operate Tools Wind	dow Help Stop	Number of strips
			Table Control Strip #22 Strip #24 Strip #26 Strip #28 Strip #30 Strip #32 Strip #34 Strip #36	-50,922E-12 -8,692E-12 32,955E-12 8,640E-12 -43,107E-12 -95,152E-12 7,393E-12 66,289E-12	Ok Ok	
"Pinhole"	Metal short		Strip #38 Strip #40 Strip #42	-10,895E-12 -6,946E-12 -12,267E-12	0k 0k 0k	
		4	File will be saved to:			Number of bad strips on current side
Metal brake	Scratches	_				

- Automated testing procedure;
- LabView program;
- Check for pinholes, metal shorts, strip current, coupling capacitance;
- Shows result online and also saves ASCII file.

Detailed sensor quality assurance

Sensor Quality Assurance - Current Stability

15,0n

10,0n

5,0n

0,0-

Ó

20

10

30

Measurement time, hours

40

- Labview program
- Measuring temperature and humidity
- Automized measurements (65 hours)
- Excluding the temperature effect

50

Radiation tolerance of our sensor prototypes

- 12 baby sensors selected: 4 sensors per neutron fluence
- exposed to neutrons: IJS, Ljubljana, Slovenia
- neutron fluences: 1×10^{13} , 5×10^{13} , 1×10^{14} n_{eq} cm⁻²

Radiation tolerance of our sensor prototypes

• Operated at -5 degrees in a shielded box

fluence (n	full depletion, V	bias , V ± 1	charge (ke	collected	charge collection efficiency (%) ±4	
			p-side	n-side	p-side	n-side
0	80 ± 2	160	16	14	100	90
1 × 10	35 ± 5	150	14.6	14.4	90	91
5 × 10	45 ± 5	250	13	13.2	80	84
1 × 10	120 ± 2	400	13	12.2	80	77

Beam test at COSY, December 2013

• Second module prototype with CBM05 sensor prototype and second batch of the low-mass micro-cables and n-XYTER FEB, proton beam, 2.8 GeV/c

Beam test at COSY, December 2013

• Second module prototype with CBM05 sensor prototype and second batch of the low-mass micro-cables and n-XYTER FEB, proton beam, 2.8 GeV/c

Daisy-Chained Sensor (M3), Y-scan

Summary

- CBM experiment aims to explore the QCD phase diagram in the region of high net baryonic densities and moderate temperatures using particular rare, penetrating probes;
- Silicon Tracking System is the will be used for particle tracking and determination of momentum of charged particles;
- STS will be built of large amount of silicon sensors, read-out cables and read-out electronics;
- For sensor characterization a lot of different procedures are being done with our sensor prototypes;
- Radiation tolerance study showed that the sensors survived even after being exposed to 10¹⁴ n_{eq}cm⁻² resulting in expected decrease of charge collection efficiency;
- Simulated results for track reconstruction efficiency, momentum resolution and particle identification are in good agreement with our expectations.

Summary

- Technical Design Report approved in 2013
- production of components to start in 2016
- commissioning in CBM cave planned in 2019

STS project team: participants from 15 institutes in Germany, Poland, Russia, Ukraine

http://repository.gsi.de/record/54798

Thank you for attention!

STS Layout

STS sensor prototypes

Prototype	Year	Vendor	Processing	Size [cm	Description
CBM01	2007	CiS	double-sided	5.5 × 5.5	±7.5 deg
CBM03	2010	CiS	double-sided	6.2 × 6.2	±7.5 deg
CBM03'	2011	CiS	Single/CBM03	6.2 × 6.2	test for CBM05
CBM05	2013	CiS	double-sided	6.2 × 6.2	7.5/0 deg, full-size
CBM05H4	2013	Hamamatsu	double-sided	6.2 × 4.2	7.5/0 deg, full-size
CBM05H2	2013	Hamamatsu	single-sided	6.2 × 2.2	7.5/0 deg, full-size
CBM06	2014	Hamamatsu, CiS	double-sided	6.2 × 6.2	7.5/0 deg, full-size

under study: replacement for integrated 2nd metal layer

external on-sensor cable