

Antibaryon-nucleus bound states

Jaroslava Hrtánková Jiří Mareš

Nuclear Physics Institute, Řež, Czech Republic

FAIRNESS workshop, Vietri sul Mare, September 22 - 27, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction			Conclusions
Introduc	tion		

- study of antibaryon (\bar{p} , $\bar{\Lambda}$, $\bar{\Sigma}$, $\bar{\Xi}$) bound states in selected nuclei:
 - behavior of antibaryon in the nuclear medium
 - changes of the nuclear binding energy, single particle energies and density distributions
 - \bar{p} absorption in a nucleus
- previous study I.N. Mishustin et al, Phys. Rev. C 71 (2005)
 - possibility of long living \bar{p} in the nuclear medium?
- testing models of (anti)hadron-hadron interactions
- knowledge of \bar{p} -nucleus and \bar{Y} -nucleus interaction for future experiments (PANDA@FAIR)

- Baryons treated as Dirac fields interacting via the exchange of meson fields
 - isoscalar-scalar field σ , isoscalar-vector field ω_{μ} , isovector-vector field $\vec{\rho}_{\mu}$, and massless vector field A_{μ} .
- The standard RMF models TM and density dependent model TW99

$$g_{iN}(
ho_{VN}) = g_{iN}(
ho_{sat})f_i(x) , \quad i = \sigma, \omega, \rho ,$$

where $ho_{\mathrm{V}N}$ is a vector baryon density and $x =
ho_{\mathrm{V}N}/
ho_{\mathrm{sat}}$

(S. Typel, H.H. Wolter, Nucl. Phys. A 656 (1999) 331)

・ロト・日本・ キャー・ キー シック

• Dirac equation for nucleons and antibaryon

$$[-i\vec{\alpha}\vec{\nabla} + \beta(m_j + S_j) + V_j]\psi_j^{\alpha} = \epsilon_j^{\alpha}\psi_j^{\alpha} , \quad j = N, \overline{B} ,$$

$$\begin{split} S &= g_{\sigma j} \sigma, \quad V_{j} = g_{\omega j} \omega_{0} + g_{\rho j} \rho_{0} \tau_{3} + e_{j} \frac{1 + \tau_{3}}{2} A_{0} + \Sigma_{R} ,\\ \Sigma_{R} &= \frac{\partial g_{\omega N}}{\partial \rho_{V N}} \rho_{V N} \omega_{0} + \frac{\partial g_{\rho N}}{\partial \rho_{V N}} \rho_{I N} \rho_{0} - \frac{\partial g_{\sigma N}}{\partial \rho_{V N}} \rho_{S N} \sigma . \end{split}$$

• Klein-Gordon equations for meson fields

$$(-\triangle + m_{\sigma}^{2})\sigma = -g_{\sigma N}(\rho_{VN})\rho_{S} - g_{\sigma\bar{B}}(\rho_{VN})\rho_{S\bar{B}}$$
$$(-\triangle + m_{\omega}^{2})\omega_{0} = g_{\omega N}(\rho_{VN})\rho_{V} + g_{\omega\bar{B}}(\rho_{VN})\rho_{V\bar{B}}$$
$$(-\triangle + m_{\rho}^{2})\rho_{0} = g_{\rho N}(\rho_{VN})\rho_{I} + g_{\rho\bar{B}}(\rho_{VN})\rho_{I\bar{B}}$$
$$-\triangle A_{0} = e\rho_{p} + e_{\bar{B}}\rho_{\bar{B}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Baryon-nucleus interaction

- Nucleon-meson couplings obtained by fitting nuclear matter and finite nuclei properties
- Hyperon-meson coupling constants:
 - for ω and ρ field obtained from SU(6) symmetries,
 - for σ field obtained from fits to experimental data (Λ hypernuclei, Σ atoms, Ξ production in (K^+, K^-) reactions)
 - $\begin{array}{ll} g_{\sigma\Lambda}=0.621g_{\sigma N}, & g_{\omega\Lambda}=2/3g_{\omega N}, & g_{\rho\Lambda}=0 \ , \\ g_{\sigma\Sigma}=0.5g_{\sigma N}, & g_{\omega\Sigma}=2/3g_{\omega N}, & g_{\rho\Sigma}=2/3g_{\rho N} \ , \\ g_{\sigma\Xi}=0.299g_{\sigma N}, & g_{\omega\Xi}=1/3g_{\omega N}, & g_{\rho\Xi}=g_{\rho N} \end{array}$

\bar{B} -nucleus interaction

• $BN
ightarrow \overline{B}N$ interaction – G-parity transformation $\hat{G} = \hat{C} e^{i\pi I_1}$

Fig.1: The scalar and vector potential acting on nucleon in ¹⁶O (left) and \bar{p} in ¹⁶O_{\bar{p}} (right), calculated statically in the TM2 model.

\bar{p} -nucleus interaction

- Antiprotonic atoms: energy shifts and widths due to the strong interaction \to the depth of ReV $_{\bar{p}}\sim 100-300$ MeV
- Reduced \bar{p} coupling constants

$$g_{\sigma \bar{p}} = \xi g_{\sigma N}, \quad g_{\omega \bar{p}} = -\xi g_{\omega N}, \quad g_{\rho \bar{p}} = \xi g_{\rho N} ,$$

where parameter ξ is from $\langle 0,1
angle$

- large polarization effects confirmed
 (1.N. Mishustin et al, Phys. Rev. C 71 (2005))
- density dependent model TW99 similar results as TM model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The issue of the \bar{p} self-interaction

Fig.2: The \bar{p} density in ²⁰⁸Pb_{\bar{p}}, calculated with and without the \bar{p} self-interaction.

The \bar{p} absorption

Fig.3: The phase space suppression factor f_s as a function of the center-of-mass energy \sqrt{s} .

The \bar{p} absorption

Table 1: The 1s single particle energies $E_{\bar{p}}$ and widths $\Gamma_{\bar{p}}$ (in MeV) in ${}^{16}O_{\bar{p}}$, calculated dynamically (Dyn) and statically (Stat) with the real, complex and complex with f_s potentials (TM2 model), consistent with \bar{p} -atom data.

	Real		Complex		Complex + f _s	
	Dyn	Stat	Dyn	Stat	Dyn	Stat
Ep	193.7	137.1	175.6	134.6	190.2	136.1
Γ _p	-	-	552.3	293.3	232.5	165.0

• \bar{p} absorption in a nucleus ightarrow non-negligible contribution from the momentum dependent term in

$$s = (E_N + E_{\bar{p}})^2 - (\vec{p}_N + \vec{p}_{\bar{p}})^2 \; ,$$

where
$$E_i = m_i - B_i$$
 for $i = N, \bar{p}$.

Table 2: The 1s single particle energies $E_{\bar{p}}$ and widths $\Gamma_{\bar{p}}$ (in MeV) in $^{16}O_{\bar{p}}$, calculated dynamically in TM2 model with different approach to \sqrt{s} , consistent with \bar{p} -atom data.

	CMS	LAB
$E_{\overline{p}}$	190.2	191.6
Γ _ē	232.5	179.9

Spin symmetry in \bar{p} spectrum

- relativistic symmetry of Dirac Hamiltonian when V=S+const J.N. Ginocchio, Phys. Rep. 414, 165 261 (2005)
- spin doublets states with $j = \ell \pm \frac{1}{2}$ are degenerate
- upper components of \bar{p} wave function are equal $g_{n_r,\ell+1/2}(r) = g_{n_r,\ell-1/2}(r)$
- lower components are related by the equation

$$\left(\frac{\partial}{\partial r}+\frac{\ell+2}{r}\right)f_{n_r,\ell+1/2}(r)=\left(\frac{\partial}{\partial r}-\frac{\ell-1}{r}\right)f_{n_r,\ell-1/2}(r)$$

 spin symmetry is well preserved in antinucleon spectra X.T. He, S.G. Zhou, J. Meng, E.G. Zhao and W. Scheid, Eur. Phys. J. A 28, 265 - 269 (2006)

・ロト ・四ト ・ヨト ・ヨー うへぐ

Spin symmetry

Fig.4: Upper (g) and lower (f) components of the \bar{p} wave function in ${}^{16}O_{\bar{p}}$ TM2, calculated dynamically. Fig.5: Upper (g) and lower (f) components of the \bar{p} wave function in ${}^{16}O_{\bar{p}}$ TM2, calculated dynamically with \bar{p} absorption in the nucleus.

Antibaryon potential

Fig.6: The *B*-nucleus (left) and \overline{B} -nucleus (right) potentials in ¹⁶O.

э

Antibaryon spectrum

Fig.7: The spectrum of Λ and $\bar{\Lambda}$ in $^{16}\text{O},$ calculated in the TM2 model.

Introduction Model *B*-nucleus interaction Spin symmetry **B spectrum** Conclusions

Baryon vs. antibaryon s.p. energies

Fig.8: Single particle energies of Ξ^- and $\overline{\Xi}^+$ for $\xi = 0.2$ in various nuclei, calculated dynamically in the TM model.

Conclusions

- antibaryons are deeply bound in the nuclear medium
- ullet large polarization effects of the nuclear core due to $ar{B}$ confirmed
- \bar{p} absorption in a nucleus \bar{p} widths are suppressed due to the phase space reduction, but still remain large for potentials consistent with \bar{p} -atom data
- significant contribution from $T_{\bar{p}}$ and T_N to $\Gamma_{\bar{p}}$
- spin symmetry in \bar{p} spectrum is preserved even if the polarization effects in the nucleus and the \bar{p} absorption are taken into account