Verification of Electromagnetic Calorimeter Concept for the HADES spectrometer

Ondřej Svoboda for the HADES collaboration

Nuclear Physics Institute of the ASCR, Řež, Czech Republic

Workshop for young scientists with research interest focused on physics at FAIR, 22 – 27 September 2014, Vietri sul Mare, Italy

Outline

- Physics motivation
- Calorimeter module layout
- Front-end electronics
- Previous beam tests
- MAMI Mainz and experiment layout
- Energy resolution studies
- Energy leakage for different beams

HADES physics program

- High Acceptance DiElectron Spectrometer
- use(d) protons up to 3.5 GeV, pions up to 1.7 GeV and heavy nucleai up to 2 AGeV from SIS18/Bevalac
- studies of in-medium modifications by measuring dielectrons
- hyperon production $\Sigma(1385)$ and $\Lambda(1405)$
- strangeness measurements ϕ , K^{+/-}, $\Xi(1321)$ in heavy ion reactions

Motivation

O. Svoboda

ECAL physics background

- measurements of the respective π° and η meson two gamma decay yields together with the dielectron data for the knowledge of dielectron cocktail and normalization at incident heavy ion energies 2-10 AGeV

- better electron/pion suppression for large momenta (p>400 MeV/c) as compared to the present situation (at lower momenta the electron/hadron identification will be provided by the RICH and RPC)

- combining the two photon detection in the ECAL calorimeter with a charge particle detection in HADES to investigate ω production via the $\pi^{\circ}\pi^{+}\pi^{-}$ and the $\pi^{\circ}e^{+}e^{-}$ decays (the latter being of importance for the still unsettled question of the ω electromagnetic transition form factor)

- photon measurements are of large interest for the HADES strangeness program which addresses spectroscopy of neutral $\Lambda(1405)$ and $\Sigma(1385)$ resonances in elementary and HI reactions

tivation

Simulation of the ECAL setup

- implemented in HGeant code (GEANT₃ based framework of HADES collaboration)
- simulation of lead glass response split to:
 - shower development in a module
 - transport of the Cherenkov photons
- look-up table approach used for Cherenkov photon to fasten the calculation

Diphoton invariant mass spectra in Ni+Ni @ 8 GeV

ivation

O. Svoboda

Calorimeter module

- totally needed 978 pieces
- lead glass on loan from end cap calorimeter of OPAL experiment
- lead glass type: CEREN 25
- dimensions 92x92x420 mm
- wrapped in TYVEK paper
- brass can 0.45 mm thick
- optical fiber

1 inch Hamamatsu R8619

1.5 inch EMI 9903KB

650 pieces from MIRAC experiment (WA98 hadron calorimeter)

Glass properties:

ECAL Module

chemical composition:

SiO2 -39%,PbO - 55%, K2O - 2%, Na2O - 3%)

- density: 4.06 g/cm³
- radiation length (X_o): 2.51 cm
- refractive index: 1.708 (at 400 nm)
- Moliére radius: 3.6 cm

3 inch Hamamatsu R6091

Front-end electronics – Cracow design

- 8 input channels
- Signal split into two paths:
 - Fast path: fast discriminator for time > measurement

Electronics

- Slow path: signal integrated for amplitude > measurement
- **Differential LVDS output**
- Discriminator threshold for each channel via slow control lines
- ADC and TDC done by TRBv2 boards

- Different shaping time and gain tested
- Energy resolution with pulser: 0.6% at 100 ps time precision
- Energy resolution with LED-PMT signal: 3.6% at 150 ps time precision

O. Svoboda

O. Svoboda

FAIRNESS2014, September 22-27, 2014, Vietri sul Mare, Italy

Charge measurement with FPGA – GSI front-end board

- Idea: Modified Wilkinson ADC
- Integrate input signal with a capacitor
- Discharge via current source -> fast crossing of zero
- Q2W: Measure time to reach zero ~Q using an FPGA-TDC
- COME & KISS design: keep it small and simple by using complex commercial elements

Input signal

Electronics

Previous tests of calorimeter concept

Cosmic muons

- energy ~ 2 GeV
- energy deposit in module ~ 200 MeV
- Cherenkov light output corresponds to ~ 1200 MeV electrons
- count rate
 ~20 particles / hour

Gamma beam (MAMI Mainz)

secondary γ beam of energies in range from 0 to energy of the electron beam

 $\rm E_{e}=1508$ MeV, γ energy spread <= 1%

Pion/electron beam (CERN)

Previous tests

secondary π - beam of 0.4 – 6 GeV/c with admixture of e-

- time resolution of 215 ps for 800 MeV e-
- energy resolution 6.9% for 1 GeV e-

O. Svoboda

Motivation for new in beam tests

- compare energy resolution of modules equipped with 1^e, 1.5^e, and 3^e
 photomultipliers (decide, whether we can (not) use 1 inch PMTs)
- verify functions of developed electronics with real beam signals
- measure energy leakage between neighbor modules and its effect on energy resolution
- measure response of modules on declined beam (energy distribution between the modules and losses)
- provide more data to calibrate single detector response in simulations (tune photon transport in the modules)

To fulfill these tasks secondary **gamma beam at MAMI Mainz** facility was used...

Mainz

MAMI Mainz – test conditions

- used secondary beam of gamma photons from MAMI facility at Johannes Gutenberg-Universität Mainz
- 7. 1. 17:00 9. 1. 2014 5:00 with breaks for Bonn group
- γ photons produced on Cu-target irradiated by 1508.4 MeV electron beam
- γ beam intensity ~ 5 kHz -(100 Hz in trigger)

MAMI MainZ

Tagger

Tagger channel (from1)	E _g Low	E _g High	E _g Mean	E _g Bite
2	1398.322	1400.327	1399.325	2.005
66	1216.127	1219.411	1217.769	3.284
121	1030.452	1034.414	1032.433	3.962
170	841.208	845.549	843.379	4.341
210	675.710	680.453	678.081	4.743
261	458.898	463.720	461.309	4.821
306	268.440	273.348	270.894	4.907
352	78.992	83.746	81.369	4.754

- used tagger to select 8 known gamma energies
- 8 different trigger signals 8 energies measured in one measurement
- beam collimated by Ø 2 mm lead collimator placed
 1.5 meters upstream
- beam size in front of the modules ~ 6 mm

FAIRNESS2014, September 22-27, 2014, Vietri sul Mare, Italy

Eg = 1508 MeV

Cu Radiator

13

ECAL

Colimator

Experiment layout

- 4 modules placed on movable table (remote control, 1 cm step)
- middle position empty for beam to Bonn group experiment

Periment layout

Experiment read-out systems

Data taken by four different readout systems:

FAIRNESS2014, September 22-27, 2014, Vietri sul Mare, Italy

Periment layout

Measurements with CAEN ADC

- CAEN DT5742
- 16 channels ADC stores 1024 values in 1 µs window
- common trigger (8 tagger signals were split, sum of it was put to common trigger, different trigger channels were put to last 8 adc channels of CAEN)
- measurements with and without shaper waveforms of raw signal from module as well as shaped signals stored

eriment layout

Comparison of pulse shapes

O. Svoboda

FAIRNESS2014, September 22-27, 2014, Vietri sul Mare, Italy

Results

ADC plots

- $E_e = 1508.4$ MeV - γ energy spread ≤ 1% - 3inch Hamamatsu module at nominal HV (VH3) - measured with CAEN ADC - signal shaped by MA8000 shaper – channel 3 - energy 81 MeV downscaled 4x

- energy 271 MeV downscaled 2x

Results

Energy calibration

- measured with CAEN ADC
- signal shaped by MA8000 shaper channel 3 (linear one)

all detectors at nominal voltage (1" Hamamatsu close to maximal – saturation effects)

FAIRNESS2014, September 22-27, 2014, Vietri sul Mare, Italy

Results

Energy resolution behind the names of modules is for 1 GeV photon...

FAIRNESS2014, September 22-27, 2014, Vietri sul Mare, Italy

Results

Relative energy resolution measured with different read-out systems

Results

Measurement with rotated modules – experiment layout

Results

- measured modules with 3 inch Hamamatsu photomultipliers (VH3 and VH6)
- no rotation and two declination angles (6° and 12°)
- read output from both modules by CAEN adc, signal shaped by MA8000 shaper

Energy distribution between the modules - VH3 versus VH6

12° rotation angle, 3 inch Hamamatsu modules at nominal HV

Resu

O. Svoboda

Deposited energy in VH₃ for different path length of the γ photon

Results

O. Svoboda

Sum of energy for different path length of the γ photon

Results

Results

Sum of energy versus energy deposited in VH3

O. Svoboda

Relative energy resolution for different path length in the module VH3

Results

Path length in VH3 for 6-A is 26 cm, path length in VH3 for 12-A is 13 cm.

O. Svoboda

Summary

Motivation for calorimeter construction:

• Improved dilepton spectroscopy by HADES – lepton and photon pairs at the same time

Current status:

- ~150 modules assembled, ~70 modules measured in detail with cosmics muons
- Modules equipped with 1.5 and 3 inch photomultipliers successfully tested on γ and pion beams, usage of 1 inch photomultiplier is not suitable
- Energy resolution and response of rotated modules measured in detail
- Mechanical construction designed, simulations performed, software for read-out prepared
- Prototype of LED based monitoring system proven, but further development needed
- Two novel solutions for front-end electronic under development
- TDR updated and submitted to FAIR management, reviewers questions answered

Plans:

- Finish front-end electronic modules and LED monitoring system
- Build the detector

Summary

O. Svoboda

ECAL workgroup

Bratislava, Slovakia, Institute of Physics, Slovak Academy of Sciences S. Hlaváč

Cracow, Poland, Institute of Technology W. Czyžycki, E. Lisowski

Cracow, Poland, Smoluchowski Institute of Physics, Jagiellonian University of Krak w M. Kajetanowic, P. Salabura

Darmstadt, Germany, GSI Helmholtzzentrum für Schwerionenforschung GmbH S. Linev, W. König, J. Pietraszko, M. Traxler

Darmstadt, Germany, Institut für Kernphysik, Technische Universität T. Galatyuk, A. Rost

Frankfurt, Germany, Institut für Kernphysik, Goethe-Universität

C. Blume, B. Kardan

Moscow, Russia, Institute for Nuclear Research of Russian Academy of Sciences (INR) M. Golubeva, F. Guber, A. Ivashkin, O. Pethukov, A. Reshetin

Munich , Germany, Excellence Cluster Universe, Technische Universität München E. Epple, L. Fabbietti, K. Lapidus

Řež, Czech Republic, Nuclear Physics Institute, Academy of Sciences of Czech Republic A. Kugler, Y. Sobolev, O. Svoboda, P. Tlustý, P. Rodriguez Ramos Summary

Back-up slides

O. Svoboda

Detector response & requirements on electronics

Signal parameters				
Rise time	3 ns			
Fall time	50 ns			
S/N ratio	> 12.5			
Pulse amplitude at 20 MeV	50 mV			
Pulse amplitude at 600 MeV	1.5 V			
Expected hit rate	10 kHz / channel			
Read-out parameters				
Time resolution	< 500 ps			
Dynamic range energy	50 mV - 5 V			
Energy measurement accuracy	5 mV			
Final energy resolution				

Electronics

according to ECAL TDR

New PADIWA-AMPS1 layout with Q2W (topside)

O. Svoboda

FAIRNESS2014, September 22-27, 2014, Vietri sul Mare, Italy

Electronics

Relative energy resolution – 1 inch Hamamatsu at different HV

Results

Nominal HV for 1 inch Hamamatsu to get the same pulse high as from 1.5 and 3 inch PMTs is -1300V.

O. Svoboda

Relative energy resolution – comparison with previous experiment at MAMI

Results

Measured with the same module nr. "8", same HV, but different shaper and ADC.

Results

Energy deposited by parallel beam

O. Svoboda

FAIRNESS2014, September 22-27, 2014, Vietri sul Mare, Italy