Non-perturbative relativistic calculation of electronic quantum dynamics in low-energy ion-atom collisions

Yury Kozhedub

Outline

- Intoduction and Motivation
- Theoretical Description and Numerical Results
 - One-electron case
 - Many-electron case
- Summary and Outlook

Introduction

Heavy few-electron ions provides possibility to test of QED at extremely strong electromagnetic fields

Introduction

The 1s level dives into the negative-energy continuum at Z_{crit} ~173 [S.S. Gershtein, Ya.B. Zeldovich, 1969; W. Pieper, W. Greiner, 1969].

Introduction: super-heavy quasi-molecules

Super-critical field could be achieved in collision of two heavy ions

Diving time period is about 10^{-21} sec. Spontaneous e⁺e⁻ pair creation time is about 10^{-19} sec [Müller et al., 1972].

Time-dependent equation

Features of the investigated process:

- Low-energy ions: ~ 6 MeV/u for U
- Relativistic electron: $v_e \sim (aZ)c$

• $m_e \ll M_{nucl} \rightarrow$ Nuclei (R_{Ar} , R_B) move according to the Rutherford trajectory

The time-dependent many-electron two-center Dirac equation (in a.u.):

$$\begin{split} &i \frac{d\Psi(x_{1}, x_{2}, \dots, x_{N}, t)}{dt} = H(x_{1}, x_{2}, \dots, x_{N}, t)\Psi(x_{1}, x_{2}, \dots, x_{N}, t), \\ &H = \sum_{i} h^{\mathsf{D}}(x_{i}) + \frac{1}{2} \sum_{i \neq j} V_{e-e}(x_{i}, x_{j}), \\ &h^{\mathsf{D}} = c(\vec{\alpha} \cdot \vec{p}) + \beta mc^{2} + V_{AB}(\vec{r}), \qquad V_{AB}(\vec{r}) = V_{\mathsf{nucl}}^{(A)}(\vec{r}_{A}) + V_{\mathsf{nucl}}^{(B)}(\vec{r}_{B}), \end{split}$$

where $\vec{\alpha}$, β are the Dirac matrices, and $\vec{r_A} = \vec{r} - \vec{R_A}$, $\vec{r_B} = \vec{r} - \vec{R_B}$.

One-electron case

The time-dependent one-electron two-center Dirac equations (in a.u.):

$$i \frac{d\psi}{dt} = h^{\mathsf{D}} \psi(\vec{r}, t), \qquad h^{\mathsf{D}} = c(\vec{\alpha} \cdot \vec{p}) + \beta mc^{2} + V^{(A)}_{\mathsf{nucl}}(\vec{r}_{A}) + V^{(B)}_{\mathsf{nucl}}(\vec{r}_{B})$$

The coupled-channel approach: $\psi(\vec{r}, t) = \sum_{i} C_{i}(t)\phi_{i}(\vec{r})$

$$\begin{cases} i \sum_{j} S_{ij} \frac{dC_{j}(t)}{dt} = \sum_{j} (H_{ij} - T_{ij}) C_{j}(t) \\ \lim_{t \to -\infty} C(t) = C^{0} \end{cases}$$

$$H_{ij} = \langle \phi_i | h^D | \phi_j \rangle, \quad T_{ij} = i \langle \phi_i | \frac{\partial}{\partial t} | \phi_j \rangle, \quad S_{ij} = \langle \phi_i | \phi_j \rangle.$$

Central field Dirac and Dirac-Sturm orbitals

 $\phi_{\alpha,\mu}(\vec{r}-\vec{R}_{\alpha}(t))$ - the Dirac and Dirac-Sturm orbitals, localized on each ion.

$$\phi_{nkm}(\vec{r},\sigma) = \begin{pmatrix} \frac{P_{nk}(r)}{r} \chi_{km}(\Omega,\sigma) \\ i \frac{Q_{nk}(r)}{r} \chi_{-km}(\Omega,\sigma) \\ i \frac{Q_{nk}(r)}{r} \chi_{-km}(\Omega,\sigma) \end{pmatrix}; \qquad k = (-1)^{l+j+1/2} (j+1/2) \\ j = |k| - 1/2, \ l = j + \frac{1}{2} \frac{k}{|k|}$$

The Dirac equation in the center field potential V(r)

$$\begin{cases} c \left(-\frac{d}{dr} + \frac{k}{r} \right) Q_{nk}(r) + (V(r) + c^2) P_{nk}(r) = \varepsilon_{nk} P_{nk}(r) \\ c \left(-\frac{d}{dr} + \frac{k}{r} \right) P_{nk}(r) + (V(r) - c^2) Q_{nk}(r) = \varepsilon_{nk} Q_{nk}(r) \end{cases}$$

The Dirac-Sturm operator $h^{S} = h^{D} - \varepsilon_{0,}$ $h^{S} \phi_{j} = \lambda_{j} W(r) \phi_{j}$,

W(r) > 0, $W(r) \rightarrow 0$ when $r \rightarrow \infty$

The $1\sigma_{+}$ state energy of the U_{2}^{183+} quasimolecule as a function of the internuclear distance R.

I.I. Tupitsyn, Y.S. Kozhedub et al., PRA 2010

 $U^{91+}(1s)-U^{92+}$

Charge-transfer probability as a function of the impact parameter b

Tupitsyn, Kozhedub et al., PRA 2010; Maltsev et al., Phys. Scr. 2013

Many-electron case

$$i\frac{d\Psi(x_1,\ldots,x_N,t)}{dt} = H^{\text{eff}}(x_1,\ldots,x_N,t)\Psi(x_1,\ldots,x_N,t)$$

Independent particle model: $H^{\text{eff}} = \sum_{i} h_{i}^{\text{eff}}$

$$i\frac{d\psi_{i}(t)}{dt} = h_{i}^{\text{eff}}\psi_{i}(t)$$

$$\lim_{t \to -\infty} (\psi_{i}(t) - \psi_{i}^{0}(t)) = 0$$

$$\Psi(x_{1}, \dots, x_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{1}(x_{1}) & \cdots & \psi_{N}(x_{1}) \\ \vdots & \vdots \\ \psi_{1}(x_{N}) & \cdots & \psi_{N}(x_{N}) \end{vmatrix}$$

Dirac-Kohn-Sham Hamiltonian

 $h^{\text{DKS}} = c(\vec{\alpha} \cdot \vec{p}) + \beta mc^2 + V_{\text{H}}[\rho] + V_{\text{xc}}[\rho]$

Evaluation of probabilities

$$P_{f_1,\ldots,f_N} = \left| \langle \Psi_i(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N,t=\infty) | \Psi_f(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N) \rangle \right|^2$$

$$P_{f_1,...,f_q} = \sum_{f_{q+1} < ... < f_N} P_{f_1,...,f_N} \quad q < N$$

$$P_{f_{1},...,f_{q}} = \det(\gamma_{nn'}) \quad n, n' = 1,...,q \quad q < N \quad \text{(Inclusive probability)}$$
$$\gamma_{nn'} = \langle f_{n} | \rho | f_{n'} \rangle$$
$$\rho(x, x') = \sum_{i}^{N} |\psi_{i}(x, t = \infty) \rangle \langle \psi_{i}(x', t = \infty) |$$

$$P_{f_{1},...,f_{q}}^{f_{q+1},...,f_{l}} = P_{f_{1},...,f_{q}} - \sum_{f_{q+1}} P_{f_{1},...,f_{q},f_{q+1}} + \sum_{f_{q+1} < f_{q+2}} P_{f_{1},...,f_{q},f_{q+1},f_{q+2}} + \dots$$
$$\dots + (-1)^{L-q} P_{f_{1},...,f_{q},f_{q+1},...,f_{L}}$$

H. J. Lüdde and R. M. Dreizler, JPB, 1985 P. Kürpick and H. J. Lüdde, Comp Phys. Comm., 1993

$Ne(1s^{2}2s^{2}2p^{6})-F^{8+}(1s)$

I.I. Tupitsyn, Y.S. Kozhedub et al., PRA 2012

Ne(1s²2s²2p⁶)–F⁸⁺(1s); -F⁶⁺(1s²2s)

The probability of Ne K-shell-vacancy production as a function of the impact parameter *b* Experiment: S. Hagmann et al., PRA 1982; 1986; 1987

Y.S. Kozhedub et al., Phys. Scr. 2013

Xe-Bi⁸³⁺ 70 MeV/u: the x-ray emission

100 - Xenon L radiation 80 X-ray emission following counts the Xe-Bi⁸³⁺ collisions. 60 [A. Gumberidze *et al*, 40 GSI Scientific Report (2011)] Bismuth K radiation Xenon K radiation 20 2000 4000 6000

- Looking for states f of the ions which can de-excite via the considered x-ray emission
- Calculating the probabilities P_f to find the system in the states f after the collision
- Determination the radiative de-excitation probabilities with m emitted x-ray photons for the states f under consideration $P_m^{\rm rad}(f)$

f,m

• Evaluation the "relative" x-ray radiation intensities (the number of the emitted photons per collision) as $I = \sum m P_m^{rad}(f) P_f$

Xe-Bi⁸³⁺ 70 MeV/u: (Xe, K) radiation

 P_1 and P_2 are the probabilities to find one and two K-shell vacancies. $P^{rad}(K)$ is the fluorescence yield coefficient for the xenon K shell.

Xe-Bi⁸³⁺ 70 MeV/u: (Xe, L) radiation

The total- and *q*-intensities *I* of the Xe L-shell-vacancy production weighted by the impact parameter *b*.

Kozhedub et. al., PRA (2014)

Xe-Bi⁸³⁺ 70 MeV/u

Cross sections σ (10⁻¹⁴ cm²) of the x-ray radiation processes.

Process	(Xe, K)	(Xe, L)	(Bi, K_{α_1})	$(\text{Bi}, \textbf{K}_{\alpha_2}^{'})$	$(\mathrm{Bi},\mathrm{K}_{lpha_2}'')$
			$(2p_{3/2}-1s)$	$(2p_{1/2}-1s)$	(2s-1s)
σ of the x-ray radiation	47(3)	200(25)	20(6)	13(4)	26(10)
Nonrelativistic theory	50	218	31	20	24

Relative intensities of the x-ray radiation.

	(Xe, L)/(Xe, K)	$(Bi, K_{\alpha_1})/(Xe, K)$	$(Bi, K_{\alpha_2})/(Xe, K)$
Theory	4.2(6)	0.43(14)	0.83(30)
Experiment	3.6(2)	0.59(3)	0.69(3)

Theory: Kozhedub *et. al.,* PRA (2014) Experiment: Gumberidze *et. al.,* GSI SR (2011)

Summary

- A new method employing the Dirac-Sturm (Dirac-Fock-Sturm) basis functions for evaluation of electronic quantum dynamics in low-energy heavy-ion collisions has been developed
- Systematic calculations of inner-shell atomic processes in low-energy ion-atom collisions have been carried out
- Relativistic and many-particle effects have been studied

Summary

- A new method employing the Dirac-Sturm (Dirac-Fock-Sturm) basis functions for evaluation of electronic quantum dynamics in low-energy heavy-ion collisions has been developed
- Systematic calculations of inner-shell atomic processes in low-energy ion-atom collisions have been carried out
- Relativistic and many-particle effects have been studied

Thank you!

Summary and Outlook

Electron-positron pair production in low-energy U-U collisions

Central field Dirac orbitals

Center field Dirac bispinors:
$$\phi_{\alpha,\mu}(\vec{r} - R_{\alpha}(t))$$
$$\phi_{nkm}(\vec{r},\sigma) = \begin{pmatrix} \frac{P_{nk}(r)}{r} \chi_{km}(\Omega,\sigma) \\ i \frac{Q_{nk}(r)}{r} \chi_{-km}(\Omega,\sigma) \\ i \frac{Q_{nk}(r)}{r} \chi_{-km}(\Omega,\sigma) \end{pmatrix}; \qquad k = (-1)^{l+j+1/2} (j+1/2) \\ j = |k| - 1/2, \ l = j + \frac{1}{2} \frac{k}{|k|}$$

where P_{nk} and Q_{nk} are the large and small components, respectively.

The large and small radial components are obtained by solving numerically the Dirac equation in the center field potential V(r)

$$\begin{cases} c \left(-\frac{d}{dr} + \frac{k}{r} \right) Q_{nk}(r) + (V(r) + c^2) P_{nk}(r) = \varepsilon_{nk} P_{nk}(r) \\ c \left(\frac{d}{dr} + \frac{k}{r} \right) P_{nk}(r) + (V(r) - c^2) Q_{nk}(r) = \varepsilon_{nk} Q_{nk}(r) \end{cases}$$

Monopole approximation

Monopole approximation enables partly accounting for the potential of the second ion in constructing the basis functions. For example, the potential of the center A is given by

$$V^{(A)}(r) = V^{(A)}_{nucl}(r) + V^{(B)}_{mon}(r)$$
,

where (for the point nucleus case)

$$V_{mon}^{(B)}(r) = -\frac{1}{4\pi} \int d\Omega \frac{Z_B}{|\vec{r} - \vec{R}_{AB}|} = \begin{cases} -\frac{Z_B}{r} & r \ge R_{AB} \\ -\frac{Z_B}{R_{AB}} & r < R_{AB} \end{cases}$$

Central field Dirac-Sturm orbitals

Dirac orbitals

- The set of the Dirac wave functions of the discrete spectrum without the continuum spectrum does not form a complete basis set
- The contribution of the continuum spectrum may be more than 50%
- The radius of the Dirac orbitals rapidly increases with increasing the principal quantum number n

Dirac-Sturm orbitals

$$h^{S} = h^{D} - \varepsilon_{0}, \quad h^{S} \phi_{j} = \lambda_{j} W(r) \phi_{j},$$

$$\begin{cases} c \left(-\frac{d}{dr} + \frac{k}{r} \right) Q_{nk}^{-}(r) + (V(r) + c^{2} - \varepsilon_{n_{0}k}) P_{nk}^{-}(r) = \lambda_{nk} W(r) P_{nk}^{-}(r) \\ c \left(-\frac{d}{dr} + \frac{k}{r} \right) P_{nk}^{-}(r) + (V(r) - c^{2} - \varepsilon_{n_{0}k}) Q_{nk}^{-}(r) = \lambda_{nk} W(r) Q_{nk}^{-}(r) \\ W(r) > 0, \quad W(r) \to 0 \text{ when } r \to \infty; \qquad W(r) = \left[\frac{1 - \exp(-(\alpha r)^{2})}{(\alpha r)^{2}} \right]. \end{cases}$$

Central field Dirac-Sturm orbitals

- The Dirac-Sturm operator does not have continuum spectrum
- The set of the Dirac-Sturm orbitals forms a complete basis set
- The Dirac-Sturm orbitals have the correct asymptotic behavior for $r \rightarrow 0$ and for $r \rightarrow \infty$
- All Dirac-Sturm orbitals have approximately the same size, which does not depend on the principal quantum number n

Basis set properties

- Spectrum of the Dirac-Sturm operator is discrete and complete (including functions of the negative Dirac spectrum)
- DSO have correct asymptotic behavior when $r \rightarrow 0$ and $r \rightarrow \infty$
- All DSO have approximately the same space scale, which does not depend on the principal quantum number n
- Monopole approximation enables partly accounting for the potential of the second ion in constructing of the basis functions
- Posseses fast basis convergence, that significantly reduces the size of matrix problem and calculation time
- Provides the natural satisfaction of the initial conditions
- Allows one to evaluate the ionization processes
- Is perfect for describing the quasi-molecular states at small inter-nuclear distance. This is especially important for investigation of the diving effect

Dirac-Kohn-Sham equation

Dirac-Kohn-Sham equation

$$i\frac{d\psi}{dt}=h^{\text{DKS}}\psi(\vec{r},t)$$

 $h^{\text{DKS}} = c(\vec{\alpha} \cdot \vec{p}) + \beta mc^{2} + V_{AB}(\vec{r})$ $V_{AB}(\vec{r}) = V_{\text{H}}[\rho] + V_{\text{xc}}[\rho]$ $V_{\text{H}}[\rho] = V_{\text{nucl}}^{A}(\vec{r}_{A}) + V_{\text{nucl}}^{B}(\vec{r}_{B}) + V_{\text{C}}[\rho]$

$$V_{\text{nucl}}(\vec{r}) = \int d^{3}\vec{r'} \frac{\rho_{\text{nucl}}(\vec{r'})}{|\vec{r} - \vec{r'}|} \quad V_{\text{C}}[\rho] = \int d^{3}\vec{r'} \frac{\rho(\vec{r'})}{|\vec{r} - \vec{r'}|}$$

 $V_{xc}[\rho]$ is the exchange-correlation potential in the Perdew-Zunger parametrization *Perdew and Zunger, PRB 23, 5048 (1981)*

Central field Dirac orbitals

Center field Dirac bispinors:

$$\varphi_{nkm}(\vec{r},\sigma) = \begin{pmatrix} \frac{P_{nk}(r)}{r} \chi_{km}(\Omega,\sigma) \\ i \frac{Q_{nk}(r)}{r} \chi_{-km}(\Omega,\sigma) \end{pmatrix}; \qquad k = (-1)^{l+j+1/2} (j+1/2) \\ j = |k| - 1/2, \ l = j + \frac{1}{2} \frac{k}{|k|}$$

where P_{nk} and Q_{nk} are the large and small components, respectively.

The large and small radial components are obtained by solving numerically the Dirac equation in the center field potential V(r)

$$\begin{cases} c\left(-\frac{d}{dr}+\frac{k}{r}\right)Q_{nk}(r)+(V(r)+c^2)P_{nk}(r)=\varepsilon_{nk}P_{nk}(r)\\ c\left(-\frac{d}{dr}+\frac{k}{r}\right)P_{nk}(r)+(V(r)-c^2)Q_{nk}(r)=\varepsilon_{nk}Q_{nk}(r) \end{cases}$$

Monopole approximation

Monopole approximation enables partly accounting for the potential of the second ion in constructing the basis functions. For example, the potential of the center A is given by

$$V^{(A)}(r) = V^{(A)}_{nucl}(r) + V^{(B)}_{mon}(r)$$
,

where (for the point nucleus case)

$$V_{mon}^{(B)}(r) = -\frac{1}{4\pi} \int d\Omega \frac{Z_B}{|\vec{r} - \vec{R}_{AB}|} = \begin{cases} -\frac{Z_B}{r} & r \ge R_{AB} \\ -\frac{Z_B}{R_{AB}} & r < R_{AB} \end{cases}$$

Central field Dirac-Sturm orbitals

W

Dirac orbitals

- The set of the Dirac wave functions of the discrete spectrum without the continuum spectrum does not form a complete basis set
- The contribution of the continuum spectrum may be more than 50%
- The radius of the Dirac orbitals rapidly increases with increasing the principal quantum number n

Dirac-Sturm orbitals

$$h^{S} = h^{D} - \varepsilon_{0}, \quad h^{S} \varphi_{j} = \lambda_{j} W(r) \varphi_{j},$$

$$\left(c \left(-\frac{d}{dr} + \frac{k}{r}\right) \bar{Q_{nk}}(r) + (V(r) + c^{2} - \varepsilon_{n_{0}k}) \bar{P_{nk}}(r) = \lambda_{nk} W(r) \bar{P_{nk}}(r)\right)$$

$$\left(c \left(-\frac{d}{dr} + \frac{k}{r}\right) \bar{P_{nk}}(r) + (V(r) - c^{2} - \varepsilon_{n_{0}k}) \bar{Q_{nk}}(r) = \lambda_{nk} W(r) \bar{Q_{nk}}(r)$$

$$(r) > 0, \quad W(r) \rightarrow 0 \text{ when } r \rightarrow \infty; \qquad W(r) = \left[\frac{1 - \exp(-(\alpha r)^{2})}{(\alpha r)^{2}}\right].$$

Central field Dirac-Sturm orbitals

- The Dirac-Sturm operator does not have continuum spectrum
- The set of the Dirac-Sturm orbitals forms a complete basis set
- The Dirac-Sturm orbitals have the correct asymptotic behavior for $r \to 0$ and for $r \to \infty$
- All Dirac-Sturm orbitals have approximately the same size, which does not depend on the principal quantum number n

Critical Distances

	Point nucleus		Extended nucleus	
Z	This work	Others	This work	Others
88	24.27	24.24 ^a	19.91	19.4 ^d
90	30.96	30.96 ^a	27.06	26.5 ^d
92	38.43	38.4 ^b	34.74	34.7 ^b
		38.42 ^a		34.3 ^d
		36.8°		34.7 ^f
94	46.58	46.57 ^a	43.13	42.6 ^d
96	55.38	55.37 ^a	52.10	
98	64.79	64.79ª	61.61	61.0 ^d
				61.1 ^f

Critical Distances R_c (fm)

^aV. Lisin et al., PRL 1977 ^cJ. Rafelski and B. Müller, PL 1976 ^fB. Müller and W. Greiner, ZN 1975 ^bA. Artemyev et al., JPB 2010 ^dV. Lisin et al., PL 1980

I.I. Tupitsyn, Y.S. Kozhedub et al., PRA 2010

 $U^{91+}(1s)-U^{92+}$

The population probability of the 1s target state P_{1s} one-electron and \bar{P}_{1s} many-electron pictures.

b (fm)	\bar{P}_{1s}	$(\bar{P}_{1s} - P_{1s}) \times 10^{-4}$
15	0.550244	8.09
20	0.669606	3.25
30	0.811627	0.61
40	0.886144	0.13
50	0.909947	0.03

G. Deyneka et al., Eur. Phys. J. D 67, 258 (2013)