

Adaptive triggering for scintillation signals

Jelena Vesic Jozef Stefan Institute, Ljubljana, Slovenia

Vietri sul Mare September 2014 -The optimum choice of detector depends on the requirements of the experiment.

- -HPGe the highest resolution.
- -Scintillator based detectors:

+Good timing properties and effeciencies at reasonable cost

- not great resolution.

The detection of ionizing radiation by the scintillation light (produced in certain materials) is one of the oldest techniques used .

The scintillation process is however one of the most useful methods nowdays available for the detection and spectroscopy of a wide assortiment of radiation.

The ideal scintillation material should posses the following properties:

- It should convert the kinetic energy of charged particles into detectable light with a high scintillation efficiency.
- The conversion should be linear.
- The medium should be transparent to the wavelength of its own emission.
- The decay time of the induced luminescence should be short Fast signal pulses.
- The material should be of good optical quality/subject to manifacture in various sizes.
- Its index of refraction should be near that of glass (in case of a coupling to a PM tube).

No material simultaneously meets all the criteria

The most widely applied scintillator include the inorganic alkali halide crystals (of which sodium iodide is the favorite) and organic-based liquids and plastics.

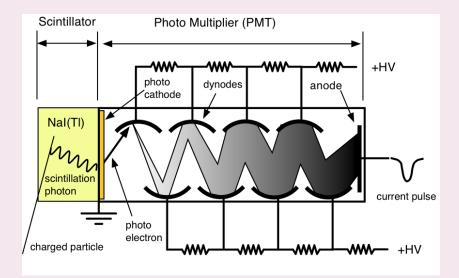
Inorganic halide crystals + The best light output and linearity - Relatively slow in their response time

Organic scintillators + Generally faster - Yield less light

(Plastic scintillators) (+ Can be easily shaped)

The high Z-value of the constituents and high density of inorganic crystals - Gamma ray spectroscopy Organics - Beta spectroscopy/Fast neutron detection. Typical pulse from a scintillator – a few hundred (thousand) photons – Too small to be measured.

The PM tube convert a weak pulse from the scintillator into a corresponding electrical signal $-10^{7}-10^{10}$ electrons (Without adding a large amount of noise to the signal).



Signal evolution:

- 1. Energy is absorbed in scintillator.
- 2. Population of states that emit photons.
- 3. Decay of radiative states: Governed by Poisson distribution:

$$P(x) = \frac{(pn)^{x}e^{-pn}}{x!} = \frac{\mu^{x}e^{-\mu}}{x!} \qquad \mu = \sum_{x=0}^{n} xP(x) = pn$$
$$\sigma^{2} = \sum_{x=0}^{n} (x-\mu)^{2}P(x) = pn$$

- 4. Photons absorbed in photocatode by expelling photoelectrons.
- 5. Finally the photoelectrons are multiplied through the gain structure.

$$I_{anode}(t) = G \cdot Q \cdot N_o \cdot e^{-t/\tau}$$

Precision of signal magnitude is limited by fluctuations

- 1. Fluctuations due to the stohastic nature of the pulse creation.
- 2. Baseline fluctuations due to the electronics "Electronic noise"

Main contribution to the fluctuations in scintillator signals - Statistical fluctuations

The output pulses are not all the same shape but rather "noised" with statistical fluctuations on the pulse tails -Afterpulsing.

Caution - Some non statistical processes can also give rise to the afterpulsing

- The emission of light from the latter stages of the multiplier structure which comes back to the photocatode.
- Imperfect vacuum in the tube Traces of residual gas can be ionized.

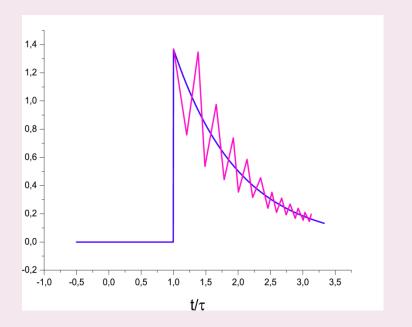
Scintillators @

TOF measurements with relativistic heavy – ion beams

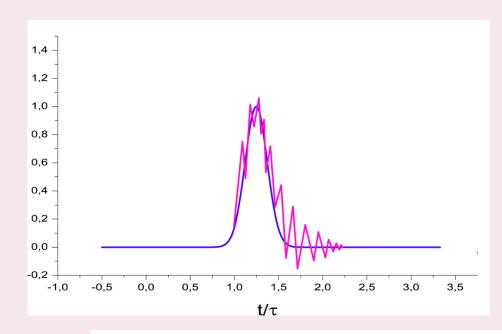
Plastic scintillator Time-Of-Flight system. (PANDA)

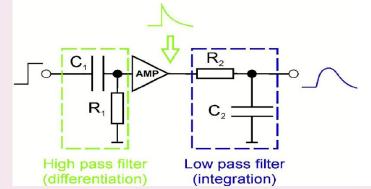
Afterpulsing+Analog electronics

Area=Energy



Amplitude=Energy





Moving window deconvolution: (MWD)

The single exponential decay with a starting time t=0 is written as:

$$f(t) = Ae^{-t/\tau}, t \ge 0$$

0, t< 0

Knowing the value $f(t_n)$ at time t_n the initial amplitude can be found as:

$$A = f(t_n) + A - f(t_n) = f(t_n) + A \left(1 - e^{-\frac{t_n}{\tau}}\right) = f(t_n) + \frac{\int_0^{t_n} f(t)dt}{\tau}.$$

In digital domain:

$$A[n] = x[n] + \frac{\sum_{k=0}^{n-1} x[k]}{\tau} = x[n] - \left(1 - \frac{1}{\tau}\right) x[n-1] + A[n-1].$$

Differentiate the deconvulated signal – obtain the MWD equation with a window M:

$$MWD_M[n] = A[n] - A[n - M] = x[n] - x[n - M] + \frac{1}{\tau} \sum_{k=n-M}^{n-1} x[k].$$

The MWD algorithm converts an exponentially decaying signal into a step signal of length M.

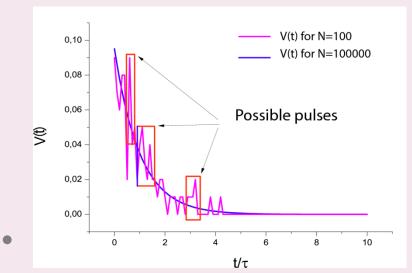
Signal to noise ratio?

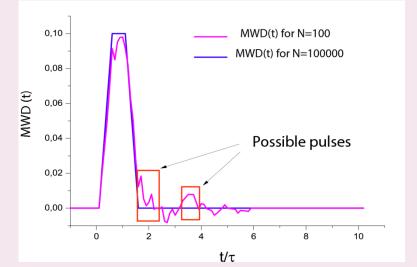
To impove the signal to noise ratio, a low pass filter is applied after the MWD module.

$$f_{n} = \begin{cases} 1 & n = 1 \\ \frac{1}{\tau} & 1 < n < M \\ \frac{1}{\tau} - 1 & n = M \end{cases} \qquad M = t_{sh} + t_{ft}$$

$$A = X * F \qquad = \int * \int \\ F = f * W \qquad = \int \\ f_{sh} & t_{sh} & t_{sh} \\ f_{sh} & t_{sh} & t_{sh} \\ 0 & \text{otherwise} \end{cases}$$

$$F = f * W \qquad = \int \\ F = f * W \qquad = \int \\ f_{sh} & t_{sh} & t_{sh} \\ f_{sh} & t_{sh} \\ f_{sh} & t_{sh} & t_{sh} \\ f_{$$

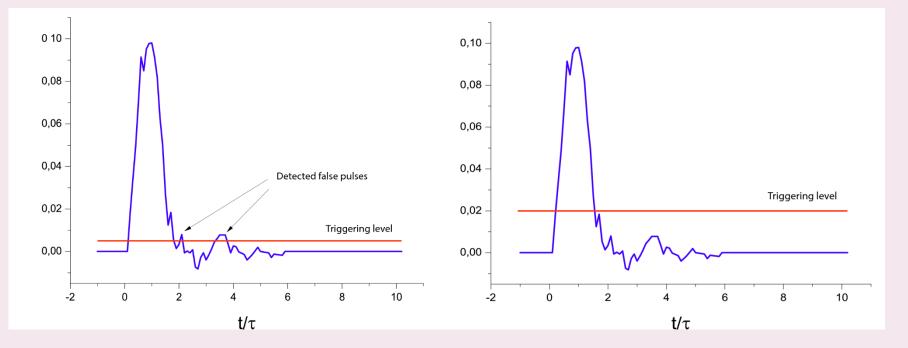




State of art –Increase trigger level/Deadtime

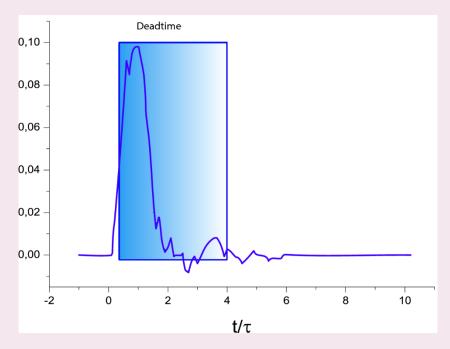
Low triggering level:

Increase triggering level:



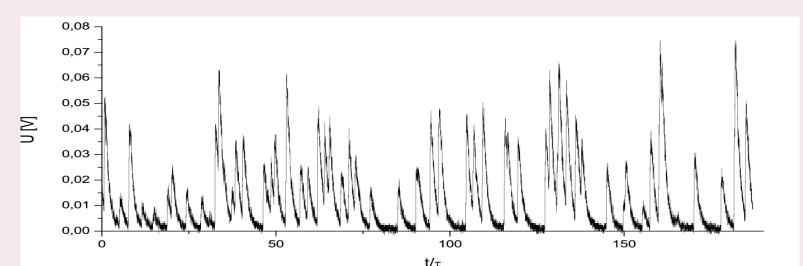
Lowers the dynamic range of the detector.

Deadtime



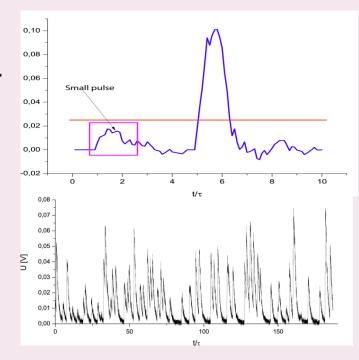
Introduce a deadtime after each pulse.

What about a high count rates ?



Increasing trigger level-Lowers the dynamic range.

Introducing the deadtime - Makes the detector inefficient at higher count rates.



Solution – Raise the trigger by a finite value and for a finite amount of time after each pulse.

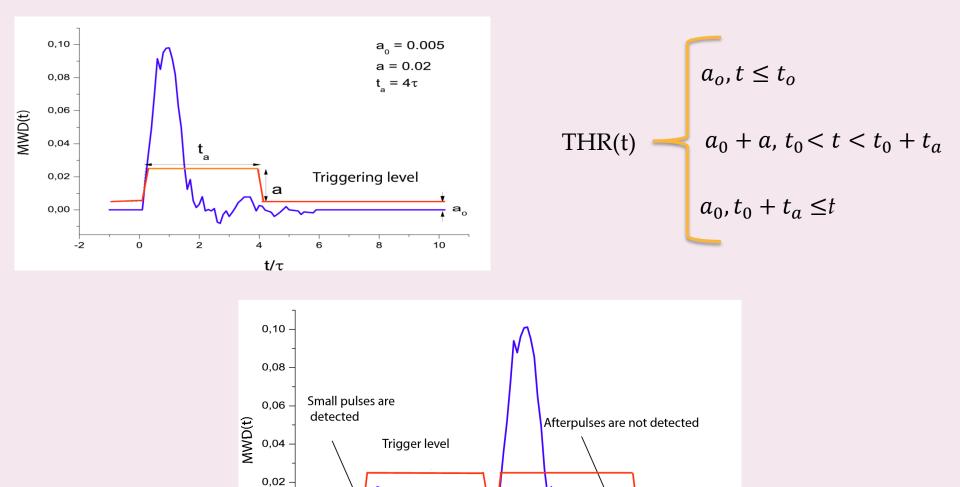
Adaptive triggering for scintillation signals

0,00

-0,02

Ó

2



4

6

8

10

Simulation

1. Simple energy spectrum given by the equation:

$$\frac{1}{N_0} \frac{dN(E)}{dE} = \frac{1}{2} \left(c\delta(E - E_1) + (1 - c)\delta(E - E_2) \right), \qquad c = \frac{N_1}{N_0}$$

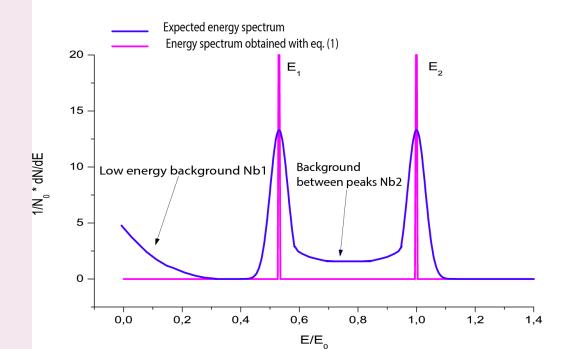
2. Every event is described with the time of event and energy (Energy is randomly sampled from the energy spectrum, time is sampled from uniform time distribution).

3. Every event excites n states proportional to its energy (Decay times are sampled from exponential distribution).

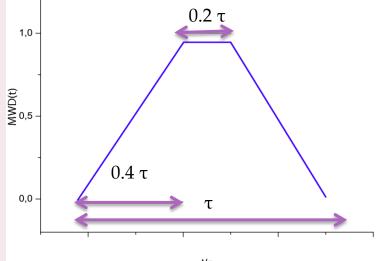
- 4. Every photon gets time stamp.
- 5. Put the time stamps into histogram with a bandwidth ω .

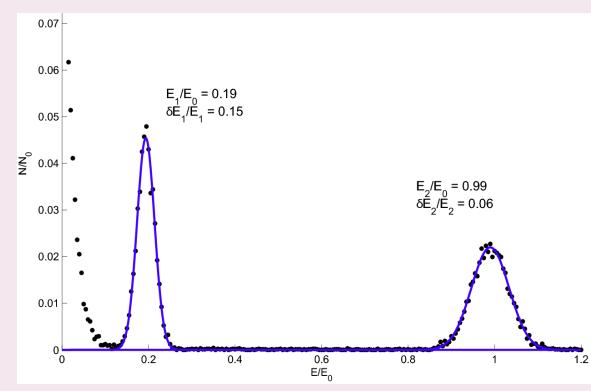
6. Histogram values - Amplitude of a current pulse from a photomultiplier.

Simulation parameters	Parameter values
Energy spectrum	$\frac{1}{N_0} \frac{dN(E)}{dE} = \frac{1}{2} \left(c\delta(E - E_1) + (1 - c)\delta(E - E_2) \right) (1)$
Beam frequency	10 ⁵ Hz
Decay time	250 ns
Proportionality constant (Reference energy corresponds to 1000 detected photoelectrons)	1000
Bandwidth	200 MHz



MWD parameters:

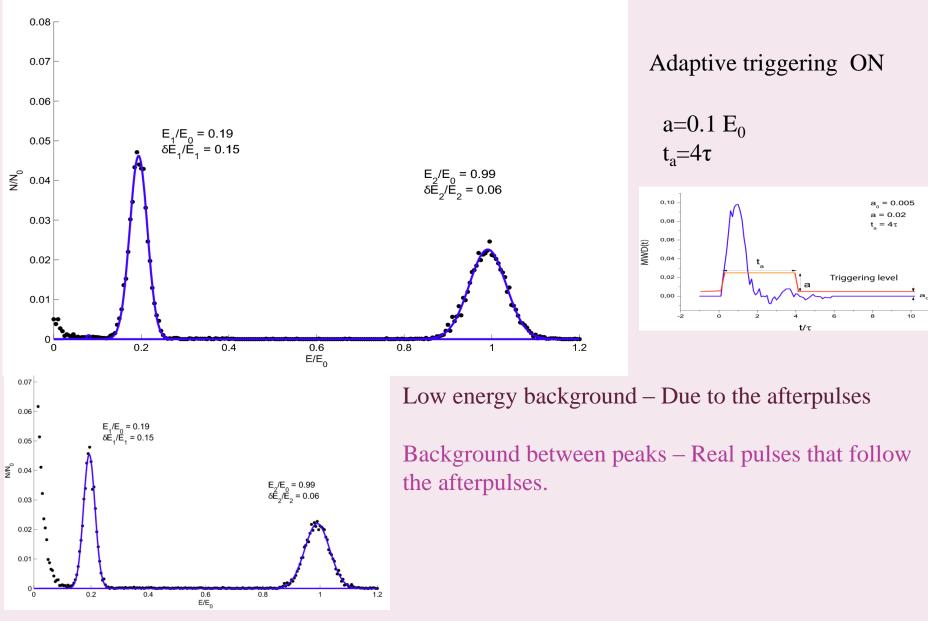




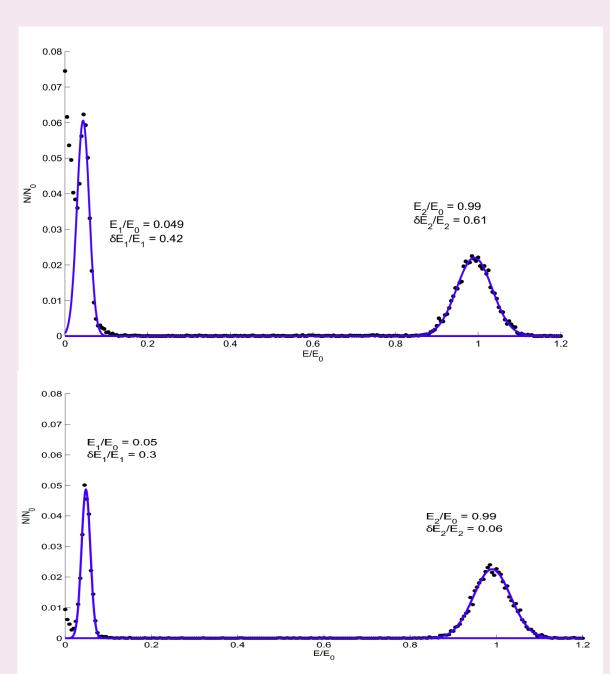
$E_1/E_0=0.2 E_2/E_0=1, c=0.5$

Adaptive triggering OFF THR= $0.025 E_0$

E₁/E₀=0.2 E₂/E₀=1, c=0.5



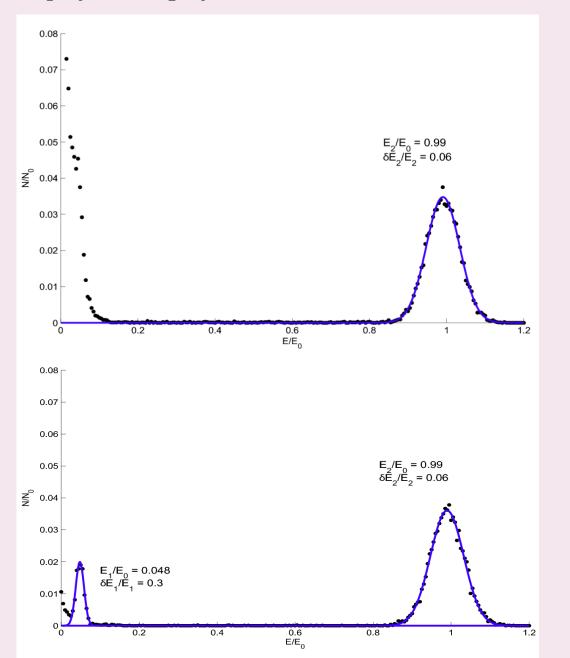
E₁/E₀=0.05 E₂/E₀=1, c=0.5



Adaptive triggering OFF THR= $0.025 E_0$

Adaptive triggering ON $a=0.1 E_0$ $t_a=4\tau$

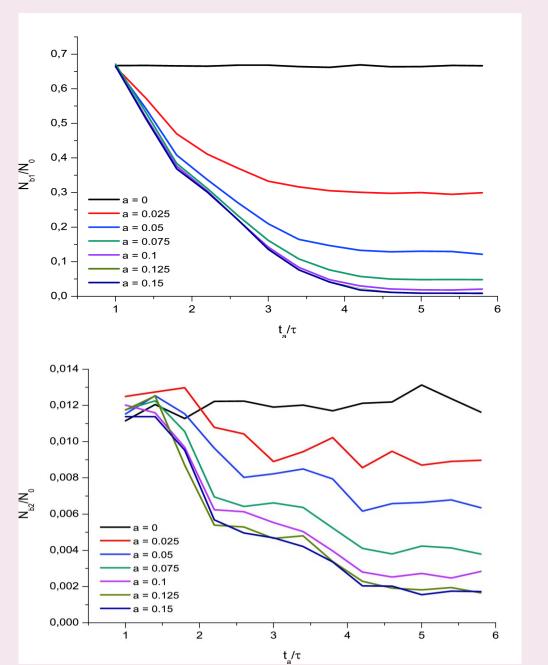
E₁/E₀=0.05, E₂/E₀=1, c=0.2



Adaptive triggering OFF THR= $0.025 E_0$

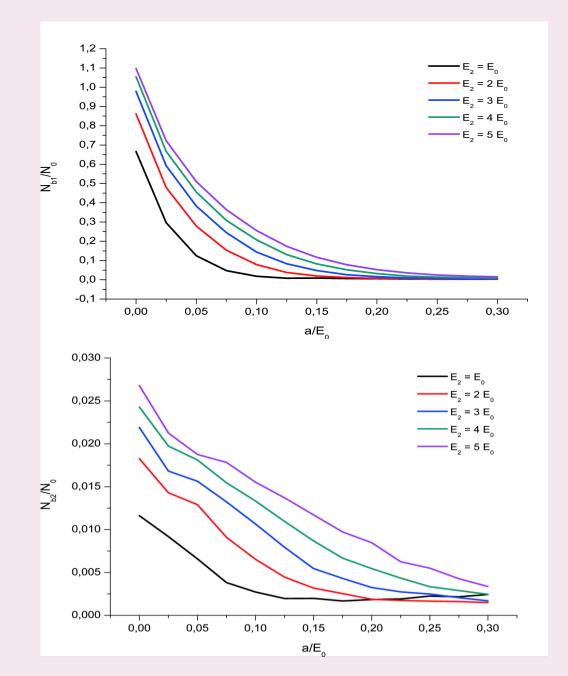
Adaptive triggering ON $a=0.1 E_0$ $t_a=4\tau$

 $E_1/E_0=0.2$, c=0.2



THR=0.025 E₀

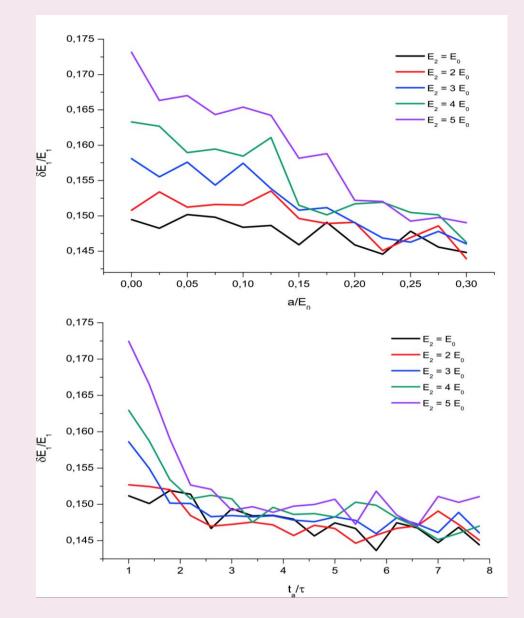
 $E_1/E_0=0.2$, c=0.2



 $t=\tau$

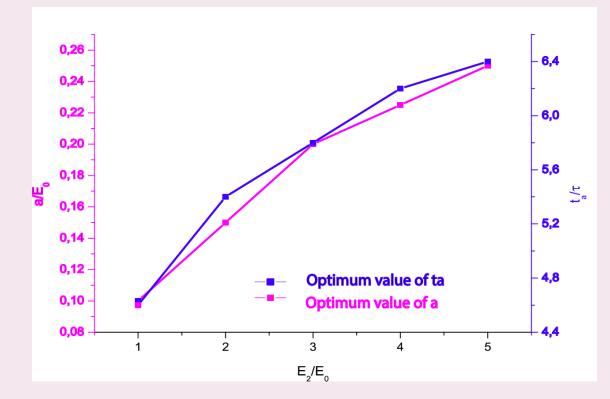
THR=0.025 E₀

E₁/E₀=0.2, c=0.2



The optimal triggering parameters

 $E_1/E_0=0.2$, c=0.2



$$\frac{t_{opt}}{\tau} = 3.76 + 0.95 \frac{E}{E_0} - 0.086 \left(\frac{E}{E_0}\right)^2$$
$$\frac{a_{opt}}{E_0} = 0.035 + 0.07 \frac{E}{E_0} - 0.005 \left(\frac{E}{E_0}\right)^2$$

Test of the optimal triggering parameters – simulated signal

Simulated sintetic signal using an energy spectrum given by eq.:

$$\frac{1}{N_0} h_{ideal}(E) = \frac{1}{N_0} \frac{dN(E)}{d(E)} = \begin{bmatrix} \frac{1}{E_1} & ; & E < E_1 \\ 0 & ; & E > E_1 \end{bmatrix}$$

The quality of parameters was deduced using:

$$\sigma_{spect} = \left(\frac{1}{n-1}\sum_{i=1}^{n}(h(E_i) - h_{ideal}(E_i))^2\right)^{1/2}$$

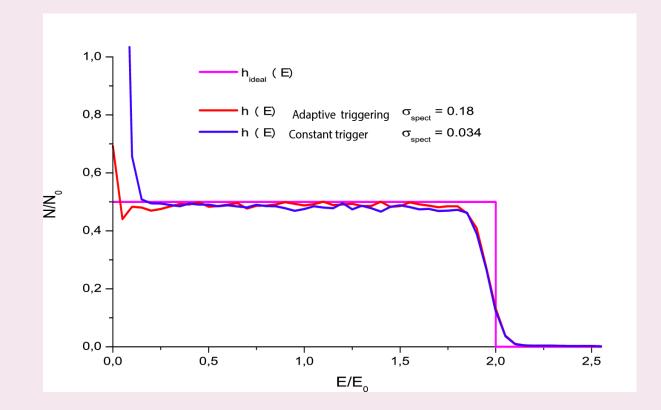
Adaptive triggering OFF: σ_{spect} .

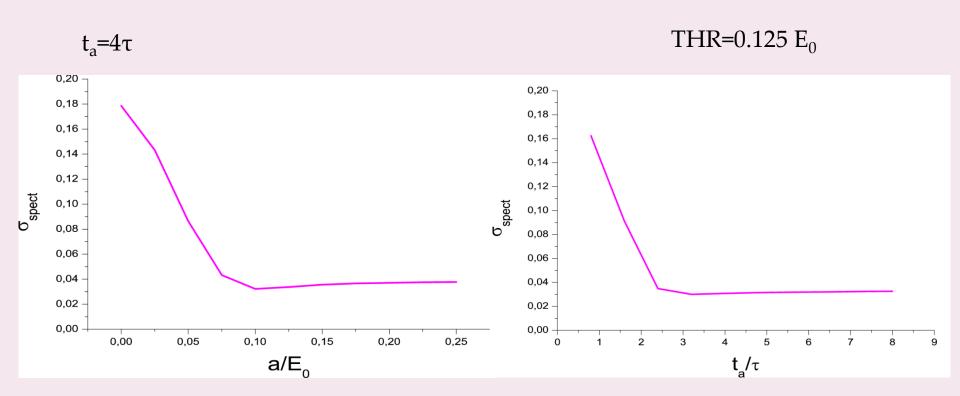
Adaptive triggering ON: With every simulated pulse we have chosen new t and a, $\sigma_{spect}/30$.

$$\begin{bmatrix} \frac{t_{opt}}{\tau} = 3.76 + 0.95 \frac{E}{E_0} - 0.086 \left(\frac{E}{E_0}\right)^2 \\ \frac{a_{opt}}{E_0} = 0.035 + 0.07 \frac{E}{E_0} - 0.005 \left(\frac{E}{E_0}\right)^2 \end{bmatrix}$$

Simulated signal – With and without adaptive triggering

$$\frac{1}{N_0} h_{ideal}(E) = \frac{1}{N_0} \frac{dN(E)}{d(E)} = - \begin{bmatrix} \frac{1}{E} & ; & E < 2E_0 \\ 0 & ; & E > 2E_0 \end{bmatrix}$$





Instead of simultaneosly adapting a and $t_{a,}$ choose the values of a and t_{a} for the highest energy in the spectrum!

EXPERIMENT

¹³⁷Cs as a radiation source (A=88.4 GBq).

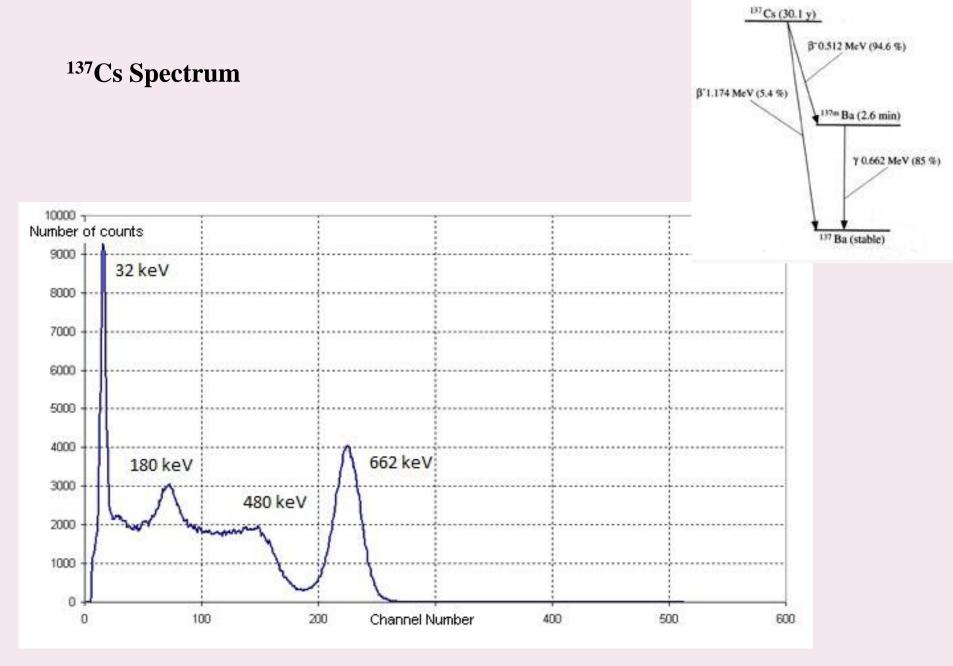
NaI(Tl) scintillator Photonis XP2040/PC PMT

Raw anode output signal was sampled with digital PicoScope oscilloscope.

Scintillation material	NaI(Tl) (2"*2")
Voltage between catode and anode of PMT	716 V
Sampling period	200 ps
Resolution	8 bits

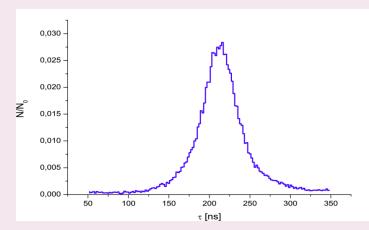
Two setups:

Distance between the source and detector	Pulse frequency [Hz]
d ₁ =3.95 m	$7.3 \cdot 10^{5}$
d ₂ =8.67 m	1.6.105



Step 1. Deduce a reference spectrum (At lower pulse frequency)

1. Deduce τ – Fit the exponential tail of every raw pulse, τ =214 ns

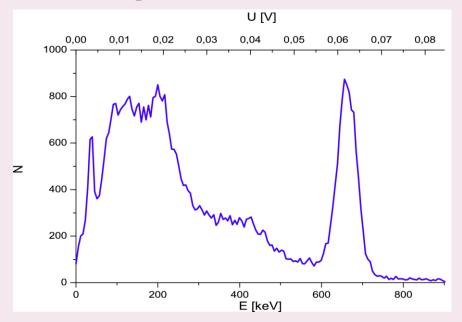


2. Deduce timing and energy

MWD parameters	Timestamp*	Energy**
Shaping time	100 ns	300 ns
Flattop	0 ns	300 ns
MWD pulse length	200 ns	900 ns

- * Only pulses that are more than 3τ separated are taken into account.
- ** THR=0.002 V, a=0.005 V, t_a=300 ns.

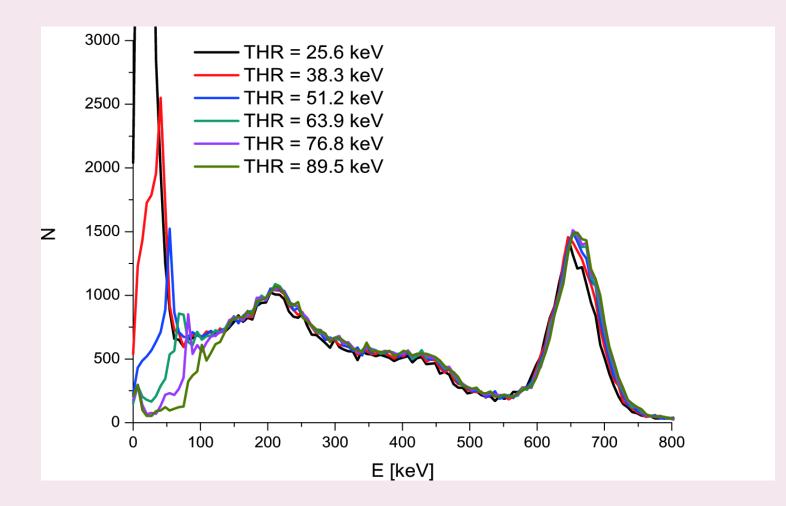
Reference spectrum :



Spectrum at higher beam frequency:

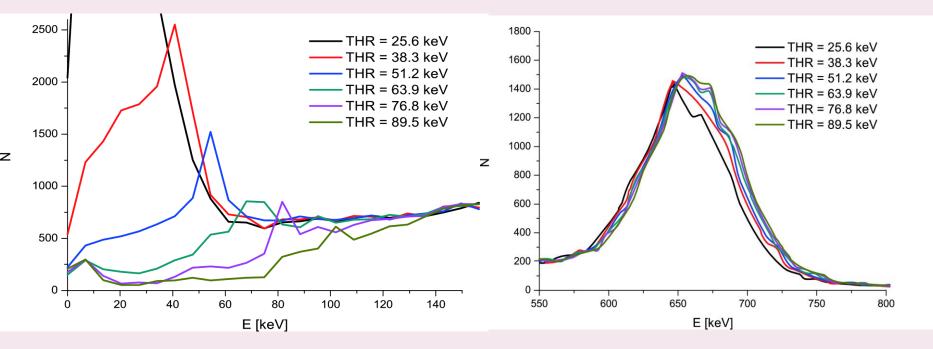
MWD parameters	Values
Shaping time	50 ns
Flattop time	50 ns
MWD pulse length	150 ns

Results – Adaptive triggering OFF

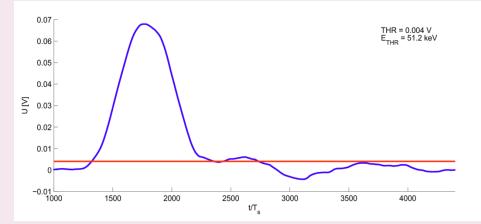


-E=32 keV is not visible.

Adaptive triggering OFF – Enhanced spectrum

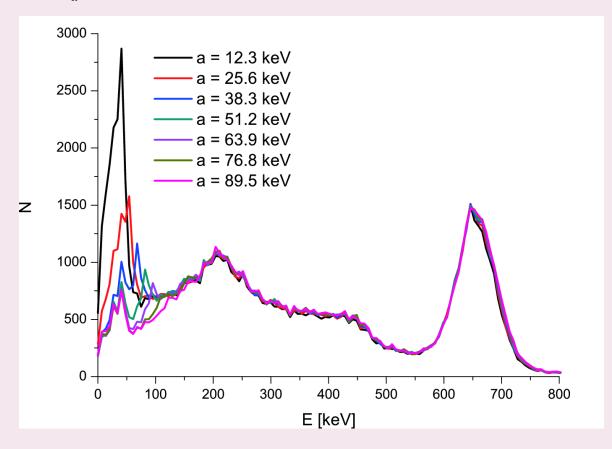


False peak with energy approximately equal to the THR energy occurs.



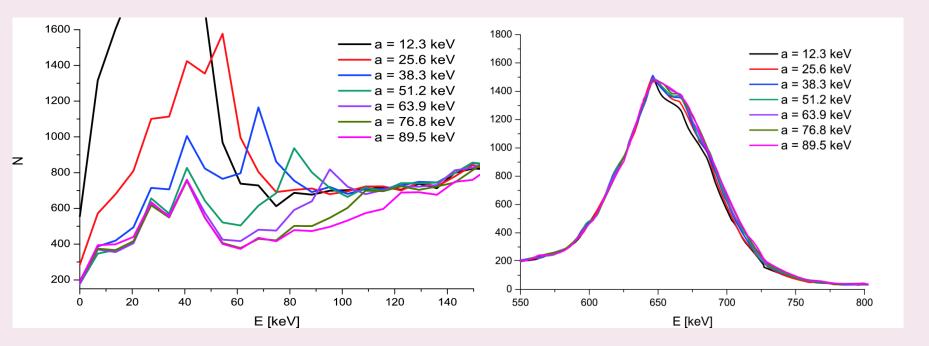
Results – Adaptive triggering ON

t_a=920 ns, THR=26 keV



- Low a Low energy peak is piled up with the afterpulses.
- High a- Low energy peak is clearly visible.

Adaptive triggering ON – Enhanced spectrum



- False peak with energy approximately equal to the THR+a energy.

The optimal triggering parameters – E_{max} =662 keV, a_{opt} =76 keV, t_{opt} =920 ns

(Seems ok!)

Applications

- High throughput in-beam experiments
- QA systems in medical radiotherapies
- Active interrogation analysis / homeland security
- Industrial construction imaging

Conclusions:

- The adaptive triggering is a relatively simple method that significantly extends the useful energy range on the low energy side of the spectrum

(when post-pulse inhibition is not applicable due to high count rates)

-This method is crucial if the desired information is presented there.

Future work:

- 1. More complicated synthetised signals
- 2. Dependence of this method on:
- MWD parameters
- Initial pulse frequency

NUCLEAR STRUCTURE AND DYNAMICS III June 14th-19th Portorož-Portorose, Slovenia