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The In-Medium Case

Why Dileptons...?

@ Dileptons represent a clean and penetrating probe of hot and
dense nuclear matter
@ Reflect the whole dynamics of a collision — Correct

description of dynamics essential!
@ Aim of studies:

o In-medium modification of vector meson properties
Hadronic many-body effects
Baryon vs. meson-driven modifications
Vector Meson Dominance

o Chiral symmetry restoration
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The In-Medium Case

Medium-modifications of hadrons - why are they

interesting?

@ Basic theory of strong interactions is QCD — running
coupling
e Large coupling at small momenta — no description from first
principles
@ The relevant degrees at low energies are hadrons
@ Hadron in a dense and / or hot environment — More and
more fundamental degrees of freedom dominate
e How are the "two faces” of QCD connected?
e Important for understanding the non-perturbative region of
QCD
@ Role of symmetries is important
@ Relevant quantity is the hadron spectral function —
coupling to current J(x) carrying the hadron’s quantum
numbers
Vacuum spectral functions can be measured
(eTe™ — hadrons) = What for in-medium case?



The In-Medium Case

Vacuum vs. Medium

@ What is different, when comparing vacuum processes with
medium?
= Vacuum: Probe can only decay, Lorentz invariance
= Medium: Scattering with particles (mesons, baryons) which
constitute the medium, explicit dependence on E and ¢

Vacuum @il T Madium -

Decay

@ Unified language: Scattering is decay into particle and hole
— Resonance-hole excitation

@ Challenge is to determine the self-energy [1 of a particle
undergoing all those medium effects

/27



The In-Medium Case

Hadronic Many-Body Theory
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@ Medium modifications of the p propegator
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include interactions with pion cloud with
hadrons (X*™™) and direct scatterings off
mesons and baryons (£*M, ¥°B)

[R. Rapp, J. Wambach, Eur.Phys.J. A6, 415-420 (1999)]
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The In-Medium Case

Theoretical approaches

@ General assumption when calculating spectral functions:
Equilibrated stage (heat bath with fixed T,ug,...)
— But: Situation in heavy-ion collision will be dominated by
non-equilibrium evolution!

*

@ Phenomenological approaches are necessary to model the
heavy-ion reaction

e Transport approaches — Treat the dynamics microscopically
and account for non-equilibrium, but implementation of full
medium-effects is difficult

e Fireball parametrizations — Probably rather too
simplifying...

o Hydrodynamics Need initial state, description of final state

interactions - applicability at low energies? oo



Phenomenological Approaches

Fireball Parametrization

@ Calculations with a fireball model achieved very good
agreement with dilepton data from SPS and RHIC
[H. van Hees, R. Rapp, Nucl. Phys. A806, 339 (2008)]

@ The zone of hot and dense matter is described by an
isentropic expanding cylindrical volume

1 2 1
VFB(t) =T <rJ_,0 + 23J_t2> (Zo + vz ot + 2azt2>

10% b T=Te=175 MeV, a,=0.1 c/fm NAGO —e—

@ Problem: How to choose alar ek T
parameters? Is it a plausible
description or a too simple
picture?

(dM dn) (20 MeV )"

= Calculations with better
constrained dynamics?




Phenomenological Approaches

Transport Models - GiBUU and UrQMD

@ Hadronic non-equilibrium approaches UrQMD resonances
@ Include baryons and mesons with Resonamce Mass  Width
masses up to 2 GeV Niw 140 350
Niso 1.515 120
@ Hadrons are propagated on classical Niss 1%
1650 b
H H Nigs 1.675 140
trajectories N e o
@ Two processes for resonance e s
production (at low energies) N L10350
1900 -0
HY Ny, 1.950 500
° C(-)"ISIOHS (e.g. mm — p) N oo
o Higher resonance decays (e.g. Mg 2150 470
N3 2.220 550
N* = N+ p) . 2250 470
Apn 122 15
@ String excitation possible above /s ~ oo 1700350
Nl 1.675 160
3 GeV Ao 1750 350
Nooo 1.840 260
. . A, 1.880 350
@ Resonances either decay after a certain An 1900 250
- - Hoe 920 200
time or are absorbed in another A T
Aloso 1990 350

collision (e.g. p+ N — Njgs0)



Phenomenological Approaches

The Input Problem

GiBUU Resonances

My Iy |[M?|/167 [mb GeV?] branghing ratio in %

rating  [MeV] [MeV] | NR AR N N T A PN oN wN'(1440) oA
P11 (1440) | =% 1462 391 70 69 22p 9
S11(1535) *HE 1534 151 8 60 51 43 25+ 1p 1 2
S11(1650) rEEE 1659 173 4 12 89 3 2p 3p 2 1
D13(1520) | **** 1524 124 4 12 59 55 + 15p 21s
Dy5(1675) | **** 1676 159 17 47 53p
P13(1720) * 1717 383 4 12 13 87p
Fi5(1680) | **** 1684 139 4 12 70 10p +1r |5p+2¢] 12
Py3(1232) | % 1232 118 | OBE 210 100 -
S31(1620) k1672 154 7 21 9 62p 255 + 4
Da3(1700) * 1762 599 7 21 14 Tds +4p 8s -
P3(1910) | *F** 1882 239 14 - 23 - 67 10p
P33(1600) w1706 430 14 12 68p 20
F35(1905) *E 1881 327 7 21 12 1p 87p -
Fy7(1950) | **** 1945 300 14 - 38 185 - 145

@ Which resonances do | have to include?
@ Which resonance is produced with which probability?
@ What is the actual branching ratio (e.g. to the p)?
— Poor experimental input
— Many parameters one can "play” with, as they are not fixed...



Phenomenological Approaches

Dilepton Sources

@ Coupling to photon?
o Straightforward for direct decays (p,w, ¢)
o What about the Dalitz decays? (7%,7,7,w)
P—~y+ete
V — P tefe™
= Form factors necessary!
@ Assumption: Vector Meson Dominance — Coupling
between hadron and (virtual) photon via vector mesons

I Vector Meson
\ Y* Dormnance
A e N—
r

@ Form factors for the Dalitz decays can be obtained from the
vector-meson dominance model

@ Baryon Resonances: B* — B+ p — B+ eTe™, but A1o3
traditionally treated explicitly
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Phenomenological Approaches
A— N+ete

Photons

@ Photon couplings (R — yN)
known from photoprduction
experiments (YN — X)

@ But: Only determined for photon
point — What for time-like region? 5

Mass

@ Need models for the form-factor, but basically no constraints
@ Assumption (J. Weil): Use VMD also for Ajp3, decay and

implement it as a two step process into the transport model
@ Note: Same physics that goes into calculation of spectral

functions
-
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Phenomenological Approaches

Transport Results

@ The transport calculations can describe dilepton production in
heavy-ion collisions at low energies with good accuracy (here
GiBUU results by Janus Weil)
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@ However, the SIS energy regime remains an interesting field
with many open questions regarding elementary and heavy-ion
collisions (bremsstrahlung, pd reactions, ...)
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Phenomenological Approaches

Challenges

@ Large variety of parameters

@ Many cross-sections and branchings are unmeasured or
unmeasurable (especially for p and A lack of data)

@ Consistency of description when going from resonances to
strings?

@ General difficulties of the transport approach at high density:

o Off-shell effects
e Multi-particle collisions

= How can we avoid (some of) these problems but still
have a good description of the reaction dynamics?
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Coarse Graining Approach

The Idea: Coarse-Graining

@ Combining a realistic 3+1 dimensional expansion of the
system with full in-medium spectral functions for the emission
of dileptons

o Idea: Microscopic description — Average over a many
single events

o Sufficiently large number of events — Distribution function
f(X, p, t) takes a smooth form

f(X,p,t) = < D 3% — %n(1)0%(B - 5h(t))>

h

o UrQMD model constitutes a non-equilibrium approach — the
equilibrium quantities have to be extracted locally at each
space-time point
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Coarse Graining Approach

Coarse Graining

space-time grid o ~ Im Mem
b hadronic
[ ] ° ,’a p EW,O“ } Tikg 2° "Tates
@ ™ ‘g energy e
[ T8
} T < 170 MeV
s Jz‘! ¢ i “ @ (] qe
() - q°
® [o°h ’ Jue B » {%.:-';'
o] ¥ o ° cell LJ ] calculate T> 170M.\‘I‘
o r rest frame | .- @=> thermal rates <
_i_UrQMD events,___r, QGP rates ®q

@ Take an ensemble of UrQMD events and span a grid of small
space time cells.

@ For those cells we determine baryon and energy density and
use Eckart’s definition to determine the rest frame properties
— use equation of state to calculate T and up

@ Two EoS: Free hadron gas with UrQMD-like degrees of
freedom + Lattice EoS for T > 170 MeV
[D. Zschiesche et al., Phys. Lett. B547, 7 (2002); M. He et al., Phys. Rev. C 85 (2012)]

@ Extract u, via simple Boltzmann approximation
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Coarse Graining Approach

Dilepton Rates

@ Lepton pair emission is calculated for each cell of 4-dim. grid,
using thermal equilibrium rates per four-volume and
four-momentum from a bath at T and up

@ The p dilepton emission (similar for w, ¢) of each cell is
accordingly calculated using the expression
[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]
8 204 2
d Np_>|| a"m, L(M )

d*xd%q :_71_3g% M2 ZifB(qO;T)ImDp(Maq;TvﬂB)

@ Multi-pion lepton pair production and QGP emission are also
included in the calculations

@ For cells with T < 50 MeV (mainly late stage) — Directly
take the p contribution from transport
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Coarse Graining Approach

UrQMD Energy and Baryon Density as Input...
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@ The UrQMD input we use gives a more realistic and

nuanced picture of the collision evolution than e.g. the
fireball approach

— Energy and baryon density are by no means homogeneous in
the whole fireball!
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Coarse Graining Approach

and Chemical Potential from Coarse Graining
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@ Note: Maximum values (central cell), not average — Different
T and u obtained for each space-time cell
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NA60 Excess Invariant Mass Spectra
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Results

In-medium p shows
broadening compared to
case without baryons

47 and QGP
contribution dominate
especially above 1 GeV

Significant part of the
excess at low masses also
stems from the QGP

= Good overall agreement between coarse-graining result and

NAG60 data

= Results similar to fireball approach in spite of different

dynamics
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Results

Intermediate Mass Region (M > 1 GeV)
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@ QGP and multi-pion annihilation are the relevant sources in
the intermediate mass region
@ For M > 1.5 Gev QGP contribution clearly dominates
@ Duality between hadronic and partonic emission rates?
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Results

Spectra in p; Slices
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@ Strongest broadening at low p;
@ Note the momentum dependence of and thermal and
non-thermal p contribution
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Results

Comparison to STAR results
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@ QGP dominates thermal emission at low and high masses
@ Also significant non-thermal p

@ Missing contribution from charm at higher masses
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HADES and CBM
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Results

Ar+KCl @ 1.76 AGeV
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@ Coarse-graining works also for SIS 18 energies
— Hydro or fireball descriptions not reasonably applicable 25 /27



Results

Au+-Au @ 1.25 and 8 AGeV
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@ At those low collision energies a significant in-medium
broadening of the p spectral function appears

@ High baryon chemical potential — Good check for baryonic
effects in spectral functions

@ At CBM we scratch temperatures around T¢ — Can we learn
something about the deconfinement?
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Outlook

Outlook

@ Explanation of dilepton measurements is still a challenge for
theory = Need for more e experimental input!
@ High precision data necessary to constrain model calculations
which still have large uncertainties
— Study of pion-induced reactions (at SIS / HADES) will be
essential for better determination of baryonic resonance
properties
o CBM will enable to explore physics in an up-to-now
uninvestigated energy range
e Very high baryonic densities — Better constraints for spectral
functions?
e Not only low-mass regime but also M > 1 GeV might be worth
being intensively studied — deconfinement / phase-transition?

@ Improve Coarse-Graining approach — Hydro + coarse-grained
transport (for better consistency when using QGP rates)
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