Theoretical approaches to dilepton production: What can we learn about in-medium effects from model calculations?

Stephan Endres

(in collab. with J. Weil , H. van Hees, M. Bleicher)

Frankfurt Institute for Advanced Studies ITP Uni Frankfurt

FAIRNESS 2014 - Vietri sul Mare (Italy) September 2014

Why Dileptons...?

- Dileptons represent a clean and penetrating probe of hot and dense nuclear matter
- Reflect the whole dynamics of a collision → Correct description of dynamics essential!
- Aim of studies:
 - In-medium modification of vector meson properties Hadronic many-body effects Baryon vs. meson-driven modifications Vector Meson Dominance
 - Chiral symmetry restoration

Medium-modifications of hadrons - why are they interesting?

- $\bullet\,$ Basic theory of strong interactions is QCD $\to\,$ running coupling
 - $\bullet\,$ Large coupling at small momenta \rightarrow no description from first principles
- The relevant degrees at low energies are hadrons
- $\bullet\,$ Hadron in a dense and / or hot environment $\to\,$ More and more fundamental degrees of freedom dominate
 - How are the "two faces" of QCD connected?
 - Important for understanding the non-perturbative region of QCD
- Role of **symmetries** is important
- Relevant quantity is the hadron spectral function \rightarrow coupling to current J(x) carrying the hadron's quantum numbers
- Vacuum spectral functions can be measured (e⁺e⁻ → hadrons) ⇒ What for in-medium case?

Vacuum vs. Medium

- What is different, when comparing vacuum processes with medium?
 - \Rightarrow **<u>Vacuum</u>**: Probe can only decay, Lorentz invariance
 - \Rightarrow <u>Medium</u>: Scattering with particles (mesons, baryons) which constitute the medium, explicit dependence on *E* and \vec{q}

- \bullet Unified language: Scattering is decay into particle and hole \rightarrow Resonance-hole excitation
- Challenge is to determine the **self-energy** Π of a particle undergoing all those medium effects

Hadronic Many-Body Theory

• Medium modifications of the ρ propegator

$$\mathsf{D}_{
ho} \propto rac{1}{\mathsf{M}^2 - \mathsf{m}_{
ho}^2 - \Sigma^{
ho\pi\pi} - \Sigma^{
ho\mathsf{M}} - \Sigma^{
ho\mathsf{B}}}$$

include interactions with pion cloud with hadrons ($\Sigma^{\rho\pi\pi}$) and direct scatterings off mesons and baryons ($\Sigma^{\rho M}$, $\Sigma^{\rho B}$)

[R. Rapp, J. Wambach, Eur.Phys.J. A6, 415-420 (1999)]

Theoretical approaches

- General assumption when calculating spectral functions: **Equilibrated stage** (heat bath with fixed $T, \mu_B, ...$)
 - \rightarrow <u>But</u>: Situation in heavy-ion collision will be dominated by non-equilibrium evolution!

- Phenomenological approaches are necessary to model the heavy-ion reaction
 - Transport approaches \rightarrow Treat the dynamics microscopically and account for non-equilibrium, but implementation of full medium-effects is difficult
 - Fireball parametrizations \rightarrow Probably rather too simplifying...
 - **Hydrodynamics** Need initial state, description of final state interactions applicability at low energies?

Fireball Parametrization

• Calculations with a **fireball model** achieved very good agreement with dilepton data from SPS and RHIC

[H. van Hees, R. Rapp, Nucl. Phys. A806, 339 (2008)]

• The zone of hot and dense matter is described by an isentropic expanding cylindrical volume

$$V_{\mathrm{FB}}(t)=\pi\left(r_{\perp,0}+rac{1}{2}m{a}_{\perp}t^2
ight)^2\left(z_0+m{v}_{z,0}t+rac{1}{2}m{a}_zt^2
ight)$$

- Problem: How to choose parameters? Is it a plausible description or a too simple picture?
- ⇒ Calculations with better constrained dynamics?

Results C

Outlook

Transport Models - GiBUU and UrQMD

- Hadronic non-equilibrium approaches
- Include baryons and mesons with masses up to 2 GeV
- Hadrons are propagated on classical trajectories
- Two processes for resonance production (at low energies)
 - Collisions (e.g. $\pi\pi \to \rho$)
 - Higher resonance decays (e.g. $N^* \rightarrow N + \rho$)
- String excitation possible above $\sqrt{s} \approx 3 \text{ GeV}$
- Resonances either decay after a certain time or are absorbed in another collision (e.g. $\rho + N \rightarrow N_{1520}^*$)

UrQMD resonances

Resonance	Mass	Width
N_{1440}^{*}	1.440	350
N_{1520}^{*}	1.515	120
N^{*}_{1535}	1.550	140
N_{1650}^{*}	1.645	160
N_{1675}^{*}	1.675	140
N_{1680}^{*}	1.680	140
N^{*}_{1700}	1.730	150
N_{1710}^{*}	1.710	500
N_{1720}^{*}	1.720	550
N_{1900}^{*}	1.850	350
N_{1990}^{*}	1.950	500
N_{2080}^{*}	2.000	550
N_{2190}^{*}	2.150	470
N^{*}_{2220}	2.220	550
N^{*}_{2250}	2.250	470
Δ_{1232}	1.232	115
Δ^{*}_{1600}	1.700	350
Δ^{*}_{1620}	1.675	160
Δ^{*}_{1700}	1.750	350
Δ_{1900}^{*}	1.840	260
Δ^{*}_{1905}	1.880	350
Δ^{*}_{1910}	1.900	250
Δ_{1920}^{*}	1.920	200
Δ^{*}_{1930}	1.970	350
Δ_{1950}^{*}	1.990	350

The Input Problem

Gibuu	Resonances

		M_0	Γ_0	$ M^2 /1$	branching ratio in %							
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^*(1440)$	$\sigma \Delta$
$P_{11}(1440)$	****	1462	391	70	· _ ·	69	·	22_P		9		<u> </u>
$S_{11}(1535)$	***	1534	151	8	60	51	43	_	$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	****	1659	173	4	12	89	3	2_D	3_D	2	1	
$D_{13}(1520)$	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_S			
$D_{15}(1675)$	****	1676	159	17	_	47		53_D		-		
$P_{13}(1720)$	*	1717	383	4	12	13	_		87_{P}	-		
$F_{15}(1680)$	****	1684	139	4	12	70	<u> </u>	$10_P + 1_F$	$5_P + 2_F$	12		
$P_{33}(1232)$	****	1232	118	OBE	210	100		_				
$S_{31}(1620)$	**	1672	154	7	21	9	-	62_D	$25_{S} + 4_{D}$	-		
$D_{33}(1700)$	*	1762	599	7	21	14	-	$74_{S} + 4_{D}$	8_S	_		_
$P_{31}(1910)$	****	1882	239	14		23		_			67	10_P
$P_{33}(1600)$	***	1706	430	14		12	-	68_P		_	20	_
$F_{35}(1905)$	***	1881	327	7	21	12	—	1_P	87_P	-		_
$F_{37}(1950)$	****	1945	300	14		38		18_F		_		44_F

- Which resonances do I have to include?
- Which resonance is produced with which probability?
- What is the actual **branching ratio** (e.g. to the ρ)?
- \rightarrow Poor experimental input
- $\rightarrow\,$ Many parameters one can "play" with, as they are not fixed...

Dilepton Sources

• Coupling to photon?

- Straightforward for direct decays ($\rho, \omega, \phi)$
- What about the Dalitz decays? $(\pi^0,\eta,\eta',\omega)$
 - ${\rm P} \rightarrow \gamma + {\rm e}^+ {\rm e}^-$
 - $V \rightarrow P + e^+ e^-$
 - \Rightarrow Form factors necessary!
- Assumption: Vector Meson Dominance → Coupling between hadron and (virtual) photon via vector mesons

- Form factors for the Dalitz decays can be obtained from the **vector-meson dominance** model
- Baryon Resonances: $B^* \to B + \rho \to B + e^+e^-$, but Δ_{1232} traditionally treated explicitly

$\overline{\Delta ightarrow N} + e^+ e^-$

- Photon couplings $(R \rightarrow \gamma N)$ known from photoprduction experiments $(\gamma N \rightarrow X)$
- But: Only determined for photon point → What for time-like region?

- Need models for the form-factor, but basically no constraints
- Assumption (J. Weil): Use VMD also for Δ_{1232} decay and implement it as a two step process into the transport model
- <u>Note</u>: Same physics that goes into calculation of spectral functions

Results

Transport Results

 The transport calculations can describe dilepton production in heavy-ion collisions at low energies with good accuracy (here GiBUU results by Janus Weil)

• However, the SIS energy regime remains an interesting field with many open questions regarding elementary and heavy-ion collisions (bremsstrahlung, *pd* reactions, ...)

Challenges

- Large variety of parameters
- Many cross-sections and branchings are unmeasured or unmeasurable (especially for ρ and Δ lack of data)
- Consistency of description when going from resonances to strings?
- General difficulties of the transport approach at high density:
 - Off-shell effects
 - Multi-particle collisions
- ⇒ How can we avoid (some of) these problems but still have a good description of the reaction dynamics?

The Idea: Coarse-Graining

- Combining a realistic 3+1 dimensional expansion of the system with full in-medium spectral functions for the emission of dileptons
- \bullet Idea: Microscopic description \rightarrow Average over a many single events
- Sufficiently large number of events \rightarrow Distribution function $f(\vec{x}, \vec{p}, t)$ takes a smooth form

$$f(\vec{x},\vec{p},t) = \left\langle \sum_{h} \delta^{3}(\vec{x}-\vec{x}_{h}(t))\delta^{3}(\vec{p}-\vec{p}_{h}(t)) \right\rangle$$

• UrQMD model constitutes a non-equilibrium approach \rightarrow the equilibrium quantities have to be extracted locally at each space-time point

Coarse Graining

- Take an ensemble of UrQMD events and span a grid of small space time cells.
- For those cells we determine baryon and energy density and use Eckart's definition to determine the **rest frame** properties
 → use equation of state to calculate T and µ_B
- Two EoS: Free hadron gas with UrQMD-like degrees of freedom + Lattice EoS for *T* > 170 MeV

[D. Zschiesche et al., Phys. Lett. B547, 7 (2002); M. He et al., Phys. Rev. C 85 (2012)]

• Extract μ_{π} via simple Boltzmann approximation

Dilepton Rates

- Lepton pair emission is calculated for each cell of 4-dim. grid, using thermal equilibrium rates per four-volume and four-momentum from a bath at T and μ_B
- The ρ dilepton emission (similar for ω , ϕ) of each cell is accordingly calculated using the expression

[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

$$\frac{\mathrm{d}^{8}\mathsf{N}_{\rho\to\mathsf{II}}}{\mathrm{d}^{4}\mathsf{x}\mathrm{d}^{4}\mathsf{q}} = -\frac{\alpha^{2}\mathsf{m}_{\rho}^{4}}{\pi^{3}\mathsf{g}_{\rho}^{2}}\frac{\mathsf{L}(\mathsf{M}^{2})}{\mathsf{M}^{2}}\mathsf{z}_{\pi}^{2}\mathsf{f}_{\mathsf{B}}(\mathsf{q}_{0};\mathsf{T})\mathsf{Im}\mathsf{D}_{\rho}(\mathsf{M},\mathsf{q};\mathsf{T},\mu_{\mathsf{B}})$$

- Multi-pion lepton pair production and QGP emission are also included in the calculations
- For cells with T < 50 MeV (mainly late stage) \rightarrow Directly take the ρ contribution from transport

UrQMD Energy and Baryon Density as Input...

- The UrQMD input we use gives a more realistic and nuanced picture of the collision evolution than e.g. the fireball approach
- $\rightarrow\,$ Energy and baryon density are by no means homogeneous in the whole fireball!

Temperature and Chemical Potential from Coarse Graining

• <u>Note</u>: Maximum values (central cell), not average \rightarrow Different T and μ obtained for each space-time cell

Results Our

NA60 Excess Invariant Mass Spectra

- In-medium ρ shows broadening compared to case without baryons
- 4π and QGP contribution dominate especially above 1 GeV
- Significant part of the excess at low masses also stems from the QGP
- ⇒ Good overall agreement between coarse-graining result and NA60 data
- ⇒ Results similar to fireball approach in spite of different dynamics

Results

Outlook

Intermediate Mass Region (M > 1 GeV)

- QGP and multi-pion annihilation are the relevant sources in the intermediate mass region
- $\bullet~{\rm For}~{\rm M}>1.5~{\rm Gev}~{\rm QGP}$ contribution clearly dominates
- Duality between hadronic and partonic emission rates?

m_t Spectra

Spectra in p_t Slices

- Strongest broadening at low p_t
- Note the momentum dependence of and thermal and non-thermal ρ contribution

Comparison to STAR results

- QGP dominates thermal emission at low and high masses
- Also significant non-thermal ρ
- Missing contribution from charm at higher masses

HADES and CBM

Results Out

Ar+KCI @ 1.76 AGeV

• Coarse-graining works also for SIS 18 energies \rightarrow Hydro or fireball descriptions not reasonably applicable

Results Out

Au+Au @ 1.25 and 8 AGeV

- At those low collision energies a significant in-medium broadening of the ρ spectral function appears
- \bullet High baryon chemical potential \rightarrow Good check for baryonic effects in spectral functions
- At CBM we scratch temperatures around $T_C \rightarrow$ Can we learn something about the deconfinement?

Outlook

- Explanation of dilepton measurements is still a challenge for theory \Rightarrow Need for more e experimental input!
- High precision data necessary to constrain model calculations which still have large uncertainties
 - \rightarrow Study of pion-induced reactions (at SIS / HADES) will be essential for better determination of baryonic resonance properties
- CBM will enable to explore physics in an up-to-now uninvestigated energy range
 - $\bullet\,$ Very high baryonic densities $\to\,$ Better constraints for spectral functions?
 - Not only low-mass regime but also M $> 1~{\rm GeV}$ might be worth being intensively studied \rightarrow deconfinement / phase-transition?
- Improve Coarse-Graining approach \rightarrow Hydro + coarse-grained transport (for better consistency when using QGP rates)