

Photon emission from viscous hydrodynamics in relativistic heavy-ion collisions

Chun Shen The Ohio State University

In collaboration with Ulrich Heinz, Charles Gale, and Jean-Francois Paquet

Feb. 24, 2014 EMMI RRTF GSI Darmstadt

Little Bang

Photons from Heavy-ion Collisions

Challenge from Experiment

PHENIX
 measurements show
 large direct photon v₂
 at p_T < 4 GeV

The state-of-the-art calculation underestimates the data by a factor of 5!

4(23)

Fitted T_{eff} from Experiments

State-of-the-art hydrodynamic modeling

State-of-the-art hydrodynamic modeling

Photon spectra and radial flow

8(23)

Fitted T_{eff} vs. True Temperature

- Photon emission rates $\propto \exp(-E/T)\log(E/T)$, $T_{\rm eff} > T$
- All photons with T < 250 MeV at RHIC and < 300 MeV at LHC carries T_{eff} within the experimental fitted region
- About 50-60% of photons are emitted from T = 165~250 MeV, they are strongly blue shifted by radial flow

$$T_{\rm eff} = T \sqrt{\frac{1+v}{1-v}}$$
9(23)

Fitted T_{eff} vs. Emission Time

- About 25% of thermal photons are emitted in the first 2 fm/c
- After 2 fm/c, thermal photons are significantly blue shifted by radial flow
- Viscous corrections to the slope of photon spectra are stronger during the early part of the evolution

Mapping thermal photon emission

 By cutting hydro medium both in T and tau, we observe a two-wave thermal photon production

early time production — high rates at high temperatures near transition region — growing of space-time volume

Centrality dependence of photon yield

 Thermal photons from hydrodynamic medium qualitatively reproduce the centrality dependence of the direct excess photon yield at the top RHIC energy

Centrality dependence of photon yield

 Thermal photons from hydrodynamic medium qualitatively reproduce the centrality dependence of the direct excess photon yield at the top RHIC energy

Centrality dependence of photon yield

 Thermal photons from hydrodynamic medium qualitatively reproduce the centrality dependence of the direct excess photon yield at the top RHIC energy

 dN^{γ}/dy vs. $dN^{\rm ch}/d\eta$

less model dependent comparison 13(23)

Photon anisotropic flow

- Shear viscous suppression of photon v₂ is dominated by the viscous corrections to photon emission rates
- Photon elliptic flow is more sensitive to the evolution of shear stress tensor during the early time

- Shear viscous suppression of photon v₂ is dominated by the viscous corrections to photon emission rates
- Photon elliptic flow is more sensitive to the evolution of shear stress tensor during the early time

Fluctuation effects on photon elliptic flow

Fluctuation effects on photon elliptic flow

Initial fluctuations increase photon's elliptic flow

Fluctuation effects on photon elliptic flow

- Initial fluctuations increase photon's elliptic flow
- Viscous suppression is larger in the event-by-event runs

- The anisotropic flows of photons show similar centrality behavior as hadrons v_{n}

- The anisotropic flows of photons show similar centrality behavior as hadrons v_{n}
- The ratio of v_2/v_3 increase with the shear viscosity.
- The centrality dependence of this ratio is stronger for MCKLN model

18(23)

Comparisons with exp. data

Missing rates in hadronic phase

Photon production rates from **baryonic channels** are missing in the hadronic phase. We can estimate this by increase photon emission rates in hadronic phase by a **factor of 2**,

Missing rates in hadronic phase

Photon production rates from **baryonic channels** are missing in the hadronic phase. We can estimate this by increase photon emission rates in hadronic phase by a **factor of 2**,

 it increases total photon v₂ by ~45% at both RHIC and LHC energies

Conclusion

- We study photon spectra and their anisotropic flows v_n from event-by-event viscous hydrodynamic medium
- Thermal photon spectra are strongly blue shifted by hydrodynamic radial flow
- Shear viscosity suppresses photon v_n . Dominant suppression comes not from flow, but from the viscous correction to the production rates.
- Elliptic and triangular flow of photons are more sensitive than hadrons to the shear stress tensor at early time and the initial state fluctuations.
- Our phenomenology study points out larger late stage emissions (e.g. baryonic channels) are needed to improve the agreement between experiment and theory.

arXiv: 1308.2111, 1308.2440 <u>https://github.com/chunshen1987/iEBE.git</u>

To Do List

(only from personal point of view)

- Including missing rates from late hadronic phase, meson-baryonic channels as well as bremsstrahlung processes and possibly their viscous corrections
- Bulk viscous corrections to photon emission rates as well as hydrodynamic evolution
- Initial flows and viscous pressure tensor effect from pre-equilibrium evolution

Back up

Photon Rates (QGP 2 to 2 processes only)

Equilibrium rates:

- For small g, results from diagrammatic approach agree well with kinetic approach and AMY
- For g = 2.0, diagrammatic approach gives 25% larger results compared to kinetic approach; difference are due to cut-off dependence.

Photon Rates (QGP 2 to 2 processes only)

Viscous corrections:

 For small g, diagrammatic approach agrees with kinetic approach

For g = 2, the deviations at small k/T may originate from different higher order $O(g^2T)$ contributions

Photon Emission Rates QGP vs HG

p⊤ dependence compared to HG rates

Photon Emission Rates QGP vs HG

Emission vs. Temperature

- High p_T photons are mostly emitted from high temperature region
- Peak photon production around T = 165-200 MeV due to large hydrodynamic space-time volume

- Comparing with ideal hydro runs, the v₂/v₃ ratio increases with shear viscosity
- MCKLN model shows stronger centrality dependence than MCGlb model

 The ratio of v₂/v₃ of photons is larger than the ratio of thermal pions

- The ratio of v₂/v₃ of photons is larger than the ratio of thermal pions
- The ratio of v₂/v₃ is larger for QGP photons compared to hadronic photons which indicates triangular flow develops faster than elliptic flow during the late stage of hydrodynamic evolution

Thermal photon emission rates can be calculated by

$$E_q \frac{dR}{d^3 q} = \int \frac{d^3 p_1}{2E_1 (2\pi)^3} \frac{d^3 p_2}{2E_2 (2\pi)^3} \frac{d^3 p_3}{2E_3 (2\pi)^3} \frac{1}{2(2\pi)^3} |\mathcal{M}|^2$$

 $\times f_1(p_1^{\mu}) f_2(p_2^{\mu}) (1 \pm f_3(p_3^{\mu})) (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - q)$ With

$$f(p^{\mu}) = f_0(E) + f_0(E)(1 \pm f_0(E)) \frac{\pi^{\mu\nu} \hat{p}_{\mu} \hat{p}_{\nu}}{2(e+p)} \chi\left(\frac{p}{T}\right)$$

We can expand photon emission rates around the thermal equilibrium:

$$q \frac{dR}{d^3 q} = \Gamma_0 + \frac{\pi^{\mu\nu} \hat{q}_\mu \hat{q}_\nu}{2(e+p)} a_{\alpha\beta} \Gamma^{\alpha\beta},$$

$$a_{\mu\nu} = \frac{3}{2(u\cdot\hat{q})^4} \hat{q}_\mu \hat{q}_\nu + \frac{1}{(u\cdot\hat{q})^2} u_\mu u_\nu + \frac{1}{2(u\cdot\hat{q})^2} g_{\mu\nu} - \frac{3}{2(u\cdot\hat{q})^3} (\hat{q}_\mu u_\nu + \hat{q}_\nu u_\mu).$$

$$7(2)$$

Thermal photon emission rates can be calculated by $dR = \int d^3p_1 = d^3p_2 = d^3p_3 = 1$

 $E_q \frac{dR}{d^3 q} = \int \frac{d^3 p_1}{2E_1 (2\pi)^3} \frac{d^3 p_2}{2E_2 (2\pi)^3} \frac{d^3 p_3}{2E_3 (2\pi)^3} \frac{1}{2(2\pi)^3} |\mathcal{M}|^2$

 $\times f_1(p_1^{\mu}) f_2(p_2^{\mu}) (1 \pm f_3(p_3^{\mu})) (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - q)$ With

 $f(p^{\mu}) = \begin{pmatrix} \pi^{\mu\nu} \hat{n}_{\nu} \hat{p}_{\nu} \\ \Gamma_0(q,T) & a_{\alpha\beta} \Gamma^{\alpha\beta}(q,T) \end{pmatrix} \chi\left(\frac{p}{T}\right)$ We can expa calculated in fluid local rest frame and the thermal equilibrium: $q\frac{dR}{d^3a} = \Gamma_0 + \frac{\pi^{\mu\nu}\hat{q}_{\mu}\hat{q}_{\nu}}{2(e+n)}a_{\alpha\beta}\Gamma^{\alpha\beta},$

7(27)

Thermal Photon Spectra

- With all available thermal emission sources, our current calculations still underestimate measured direct photon spectra at low p⊤ at both RHIC and LHC energies
- Additional emission sources need to be included to improve the agreement between theory and data

Mapping T_{eff}

- Hydrodynamic radial flow strongly blue shifts the slopes of photon spectra
- Around 2 fm/c, it greatly shrinks the photon yield distribution in terms of the effective temperature compared to the real temperature