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thermal

diluted by prompt

Challenge from Experiment

• PHENIX 
measurements show 
large direct photon    
at	



!

• The state-of-the-art 
calculation 
underestimates the 
data by a factor of 5!

v2
pT < 4 GeV

From E. Kistenev,  QM11 4(23)



Fitted Teff from Experiments
RHIC LHC

A exp(�pT /T )fit:
T = 304± 51stat+sys MeV

0� 20%

T = 221± 19± 19MeV
What does this T mean
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State-of-the-art hydrodynamic modeling
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Photon spectra and radial flow
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Fitted Teff vs. True Temperature

• About 50-60% of photons are emitted 
from T = 165~250 MeV, they are strongly 
blue shifted by radial flow

Te↵ = T

r
1 + v

1� v

Te↵ = � 1

slope• Photon emission rates / exp(�E/T ) log(E/T ) Te↵ > T,
• All photons with T < 250 MeV at RHIC and < 300 MeV at LHC 

carries Teff within the experimental fitted region

9(23)
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Fitted Teff vs. Emission Time

• About 25% of thermal photons are emitted in the first 2 fm/c

• After 2 fm/c, thermal photons are significantly blue shifted by 
radial flow

• Viscous corrections to the slope of photon spectra are 
stronger during the early part of the evolution

11(23)



Mapping thermal photon emission

• By cutting hydro medium both in T and tau, we observe 
a two-wave thermal photon production

early time production — high rates at high temperatures
near transition region — growing of space-time volume

12(23)



Centrality dependence of photon yield

• Thermal photons from hydrodynamic medium qualitatively 
reproduce the centrality dependence of the direct excess 
photon yield at the top RHIC energy 

13(23)
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Centrality dependence of photon yield

• Thermal photons from hydrodynamic medium qualitatively 
reproduce the centrality dependence of the direct excess 
photon yield at the top RHIC energy 
dN�/dy vs. dN ch/d⌘

less model dependent !
comparison 13(23)



Photon anisotropic flow
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QGP HG
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QGP HG
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Fluctuation effects on photon elliptic flow

MCGlb 0-40% @ LHC
⌘/s = 0.08

17(23)



MCGlb 0-40% @ LHC

‣ Initial fluctuations increase photon’s elliptic flow

⌘/s = 0.08

Fluctuation effects on photon elliptic flow

17(23)



MCGlb 0-40% @ LHC

‣ Viscous suppression is larger in the event-by-event runs

⌘/s = 0.08

‣ Initial fluctuations increase photon’s elliptic flow

Fluctuation effects on photon elliptic flow

17(23)



Event-by-Event Full Viscous Photon vn

1 < pT < 4 GeV

• The anisotropic flows of photons show similar centrality 
behavior as hadrons vn

LHC

v2

v3

MCGlb.

MCKLN

⌘/s = 0.08

⌘/s = 0.20

18(23)



Event-by-Event Full Viscous Photon vn

1 < pT < 4 GeV

• The ratio of v2/v3 increase with the shear viscosity.

LHC

• The centrality dependence of this ratio is stronger for 
MCKLN model

• The anisotropic flows of photons show similar centrality 
behavior as hadrons vn

18(23)



Event-by-Event Full Viscous Photon vn

⌘/s = 0.20

0-20% @ RHIC 20-40% @ RHIC 0-40% @ LHC
MCGlb ⌘/s = 0.08

MCKLN

1000 events each centrality 19(23)



RHIC 0-20%
MCGlb

MCKLN ⌘/s = 0.20

⌘/s = 0.08
LHC 0-40%

Comparisons with exp. data

no prompt  
photons 

included yet
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Missing rates in hadronic phase
Photon production rates from baryonic channels are 
missing in the hadronic phase. We can estimate this by 
increase photon emission rates in hadronic phase by a 
factor of 2,

21(23)



Missing rates in hadronic phase
Photon production rates from baryonic channels are 
missing in the hadronic phase. We can estimate this by 
increase photon emission rates in hadronic phase by a 
factor of 2,

‣ it increases total photon v2 by ~45% at both RHIC and 
LHC energies

21(23)



• We study photon spectra and their anisotropic flows vn from 
event-by-event viscous hydrodynamic medium 

• Thermal photon spectra are strongly blue shifted by 
hydrodynamic radial flow 

• Shear viscosity suppresses photon vn. Dominant 
suppression comes not from flow, but from the viscous 
correction to the production rates. 

• Elliptic and triangular flow of photons are more sensitive 
than hadrons to the shear stress tensor at early time and the 
initial state fluctuations.  

• Our phenomenology study points out larger late stage 
emissions (e.g. baryonic channels) are needed to improve 
the agreement between experiment and theory. 

Conclusion

arXiv: 1308.2111, 1308.2440 https://github.com/chunshen1987/iEBE.git 22(23)
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• Including missing rates from late hadronic phase, 
meson-baryonic channels as well as bremsstrahlung 
processes and possibly their viscous corrections 

• Bulk viscous corrections to photon emission rates as 
well as hydrodynamic evolution 

• Initial flows and viscous pressure tensor effect from 
pre-equilibrium evolution

To Do List

23(23)

(only from personal point of view)
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Equilibrium rates:



Viscous corrections:

For small g, diagrammatic approach agrees with 
kinetic approach

For g = 2, the deviations at small k/T may originate 
from different higher order           contributions O(g2T )

Photon Rates (QGP 2 to 2 processes only)
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Emission vs. Temperature

High pT photons are mostly emitted from high 
temperature region

Peak photon production around T = 165-200 MeV 
due to large hydrodynamic space-time volume

13(27)



• Comparing with ideal hydro runs, the v2/v3 ratio 
increases with shear viscosity 

• MCKLN model shows stronger centrality dependence 
than MCGlb model

Event-by-Event Full Viscous Photon vn



MCGlb. η/s = 0.08 @ 0-40% LHC MCKLN. η/s = 0.20 @ 0-40% LHC

• The ratio of v2/v3 of photons is larger than the ratio of 
thermal pions

Event-by-Event Full Viscous Photon vn

23(27)



MCGlb. η/s = 0.08 @ 0-40% LHC MCKLN. η/s = 0.20 @ 0-40% LHC

• The ratio of v2/v3 is larger for QGP photons compared to 
hadronic photons which indicates triangular flow 
develops faster than elliptic flow during the late stage of 
hydrodynamic evolution

Event-by-Event Full Viscous Photon vn

• The ratio of v2/v3 of photons is larger than the ratio of 
thermal pions

23(27)



Thermal photon emission rates can be calculated by 

Viscous Photon Emission Rates: General Formalism

Eq
dR

d3q
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Z
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2E1(2⇡)3
d3p2

2E2(2⇡)3
d3p3
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1 )f2(p
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We can expand photon emission rates around the 
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a↵��
↵�(q, T )�0(q, T )

calculated in fluid local rest frame

calculated in lab frame



Equilibrium rates

Hadron GasQGP

q
dR

d3q
= �0 +

⇡µ⌫ q̂µq̂⌫
2(e+ p)

a↵��
↵�

8(27)

Viscous Photon Emission Rates: General Formalism



Equilibrium rates

Hadron GasQGP

off-equilibrium    corrections�f

q
dR

d3q
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Thermal Photon Spectra

With all available thermal emission sources, our current 
calculations still underestimate measured direct photon 
spectra at low pT at both RHIC and LHC energies

Additional emission sources need to be included to 
improve the agreement between theory and data

7(23)



Mapping Teff

MCGlb η/s = 0.08 
0-20% Au+Au @ RHIC

MCGlb η/s = 0.08 
0-40% Pb+Pb @ LHC

• Hydrodynamic radial flow strongly blue shifts the slopes 
of photon spectra

• Around 2 fm/c, it greatly shrinks the photon yield 
distribution in terms of the effective temperature 
compared to the real temperature 17(27)


