Overview on BESIII Results

ST () RI '14

Magnus Wolke Department of Physics and Astronomy

B€SⅢ

Overview on BESIII Results

ST () RI '14

Focus: Charmonium-like states

Magnus Wolke Department of Physics and Astronomy

₿€SШ

Beijing Electron-Positron Collider BEPCII

τ - charm factory

- charmonium spectroscopy, decays
- light hadron physics
- charm physics
- τ physics
- R scan

The **BESIII** Detector

Charmonium(-like) states before 2013

above open charm threshold:

only few predicted states found

new states observed with properties different from expectations: X,Y,Z states

below open charm threshold:

good agreement between predicted and observed states

X, Y, Z states

Nomenclature: (not valid for all states)

- X: charmonium-like with J^{PC} different from 1⁻⁻ observed in B decays, pp, pp
- Y: charmonium-like with J^{PC} = 1⁻⁻ observed in e⁺e⁻ annihilation, ISR

Z: charmonium-like, charged must contain cc and light qq pair

Discovery of $Z_c^{\pm}(3900)$ in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

 $Z_{c}^{\pm}(3900)$: m = (3899.0 ± 3.6 ± 4.9) MeV/c² Γ = (46 ± 10 ± 20) MeV

close to $D\overline{D}^*$ threshold decays to $J/\Psi \rightarrow \text{contains } c\overline{c}$ electric charge $\rightarrow \text{ contains } u\overline{d}$

 \rightarrow contains at least 4 quarks

Confirmation of $Z_{f}^{\pm}(3900)$ in $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}J/\psi$

Belle: $e^+e^- \rightarrow \gamma_{ISR} \pi^+\pi^- J/\psi$ m = (3894.5 ± 6.6 ± 4.5) MeV/c² Γ = (63 ± 24 ± 26) MeV

PRL 110 (2013) 252002

CLEO-c: m = (3886 ± 4 ± 2) MeV/c² Γ = (37 ± 4 ± 8) MeV

PLB 727 (2013) 366 4.17 GeV

Evidence for $Z_{0}^{0}(3900)$ in $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}J/\psi$

CLEO-c: m = (3904 ± 9) MeV/c² Γ fixed to width of Z⁺_c(3900)

PLB 727 (2013) 366 4.17 GeV

if confirmed, this would establish the isospin triplet Z^{±,0}_c(3900)

New BESIII analysis for $Z_{\Gamma}^{0}(3900)$ in $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}J/\psi$

2.8 fb⁻¹ data at 10 energies 4.19 - 4.42 GeV

observation of $Z_{c}^{0}(3900) \rightarrow \pi^{0}J/\psi$ in $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}J/\psi$ (> 10 σ)

 $Z_{c}^{0}(3900)$: m = (3894.8 ± 2.3) MeV/c² Γ = (29.6 ± 8.2) MeV

isospin triplet Z^{±,0}(3900) confirmed

preliminary

reconstruction of $h_{r} \rightarrow \eta_{r} \gamma$ including 16 hadronic η_{r} decay modes

 $_{
m c}$ search for resonances decaying into $h_{
m c}\pi^{
m t}$ and $h_{
m c}\pi^{
m 0}$

Observation of Z_{c}^{\pm} (4020)

first observation of $Z_{c}^{\pm}(4020) \rightarrow \pi^{\pm}h_{c}$ in $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}h_{c}$

PRL 111 (2013) 242001 4.23, 4.26, 4.36 GeV

 $Z_{c}^{\pm}(4020)$: m = (4022.9 ± 0.8 ± 2.7) MeV/c² Γ = (7.9 ± 2.7± 2.6) MeV

close to $(D^{\dagger}\overline{D}^{\dagger})^{\dagger}$ threshold

...and evidence for Z_{c}^{0} (4020) Z_{c}^{0} (4020) $\rightarrow \pi^{0}h_{c}$ in $e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}h_{c}$

1409.6577 [hep-ex] 4.23, 4.26, 4.36 GeV

 Z_c^{0} (4020): m = (4023.6 ± 2.2 ± 3.9) MeV/c² Γ fixed to width of Z_c^{+} (4020)

isospin triplet Z^{±,0}_c(4020) most likely

(DD^{*}) system

 $e^{\dagger}e^{\cdot} \rightarrow \pi^{\pm}(D\overline{D}^{\star})^{\pm}$

PRL 112 (2014) 022001 4.26 GeV

very similar to $Z_{c}^{+}(3900) \rightarrow$ same state? \rightarrow coupled channel analysis

(D^{*}D^{*}) system

 $e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to \pi^{\scriptscriptstyle \pm}(D^{\scriptscriptstyle +}\overline{D}^{\scriptscriptstyle +})^{\scriptscriptstyle \pm}$

enhancement at (DD^{*})threshold

BW-fit of $Z_{c}(4025)$: m = (4026.3 ± 2.6 ± 3.7) MeV/c² Γ = (24.8 ± 5.6 ± 7.7) MeV

 π^{-} recoil mass from $e^{+}e^{-} \rightarrow \pi^{-}D^{*+}\overline{D}^{*0}$

very similar to $Z_{c}^{+}(4020) \rightarrow$ same state? \rightarrow coupled channel analysis mandatory

Z_{c} states at BESIII

channel	mass [MeV]	width [MeV]	
$J/\Psi\pi^{t}$	3899.0 ± 3.6 ± 4.9	$46 \pm 10 \pm 20$	Z _c (3900) (I=1)
$J/\Psi\pi^0$	3894.8 ± 2.3	29.6 ± 8.2 (prel.)	
$(D\overline{D}^*)$	3883.9 ± 1.5 ± 4.2	24.8 ± 3.3 ± 11.0	Z _c (3885) ?
h _c π [±] h π ⁰	$4022.9 \pm 0.8 \pm 2.7$ $4023.6 \pm 2.2 \pm 3.9$	$7.9 \pm 2.7 \pm 2.6$	DD [*] thresh 3875 MeV Z _c (4020) (I=1)
$(D^*\overline{D}^*)$	$4026.3 \pm 2.6 \pm 3.7$	$24.0 \pm 5.6 \pm 7.7$	<mark>Z (4025) ?</mark> D [*] D* thresh 4017 MeV

states must contain at least four quarks – what is their nature?

tetraquarks (Maiani, Ali et al.) hadronic molecules (Meissner, Guo et al.) hadro-charmonia (Voloshin) meson loop (Zhao et al.) ISPE model (Liu et al.)

Z_c states at BESIII

channel	mass [MeV]	width [MeV]	
$J/\Psi\pi^{t}$	3899.0 ± 3.6 ± 4.9	$46 \pm 10 \pm 20$	Z _c (3900) (I=1)
$J/\Psi\pi^0$	3894.8 ± 2.3	29.6 ± 8.2 (prel.)	
$(D\overline{D}^*)$	3883.9 ± 1.5 ± 4.2	24.8 ± 3.3 ± 11.0	Z _c (3885) ?
h π [±]	4022 9 + 0 8 + 2 7	79+27+26	$D\overline{D}^*$ thresh 3875 MeV
'' _c '' h π ⁰	$4022.0 \pm 0.0 \pm 2.7$	fixed	Z _c (4020) (I=1)
יי ^c יי (ח*ח)	$4026.3 \pm 2.2 \pm 3.3$	24.0 + 5.6 + 7.7	7 (4025) 2
	$+020.3 \pm 2.0 \pm 3.7$	$24.0 \pm 0.0 \pm 1.1$	D^*D^* thresh 4017 MeV

to be done:

determine $J^{\mbox{\tiny PC}}$ perform coupled-channel analysis of open/hidden charm channels

First observation of $e^+e^- \rightarrow \gamma X(3872)$

PRL 112 (2014) 092001 4.009, 4.229, 4.26, 4.36 GeV

First observation of $e^+e^- \rightarrow \omega x_{co}$

4.23 GeV

 \sqrt{S} : 4.21 − 4.42 GeV exclusive analysis e⁺e⁻ → ωχ_{cl} ω → π⁺π⁻π⁰ χ_{c0} → π⁺π⁻, K⁺K⁻ X_{c1.2} → γJ/Ψ

single BW fit: mass lower than Y(4260)

Overview on BESIII Results

L n C

ST () RI '14

tates established, natu **/, Z charm** (3900), Z (4020) isosp in triplets observed/confirmed New BESIII data 4.26 .42 GeV more results soon

Magnus Wolke Department of Physics and Astronomy

UNIVERSITET

The **BESIII** Collaboration

