Measurement of radiator thickness profiles and FLG overview measurements

Klaus Föhl for AG Düren
Gießen University
PANDA-PID-meeting 11-March-2014
at GSI

X-Y-linear stage

reflections

Measurement principle

Sample raw measurements

Executive Summary

quartz radiator plate DESY2013 polished by Heraeus; Heraeus gave typical RMS of 20 Ångström, provision no detailed specs possible file outfile5mm5mmqua.txt

Calibration & Reproducibility

strain change in radiator support

(order of magnitude: per torque of T=1Tm saggitta change of 1.25um)

parallelity of linear stages?

contour lines: bottom plots should be mirror images of top plots

not the case for individual surfaces

Overlay of thickness measurements

two measurements: plate vertically flipped in between (and analysis image also mirrored) N.B. zero points of the two analyses offset

Scan at radiator rim

Summary radiator

- thickness profiles at about 1um accuracy
- surface profiles unreliable
 - smaller forces and torques cause plate to warp
 - large linear stages do not move exactly parallel
 - (could be calibrated extra effort)

_

- as b cos th=c conserved quantity, adiabatic change of measured angle in 1-4 mrad range
- edge effect, angle offset +-2mrad (some photon)

FLG overview measurement

diode laser Galilei telescope

camera with tele lense set at oo

grey filter

very preliminary

1 mrad