

Mainz Report Status

Matteo Cardinali, on behalf of Mainz Group

Panda Collaboration Meeting, Darmstadt 11/03/2014

Helmholtz-Institut Mainz

- PADIWA Laser Test:
 - ♦ MCP + PADIWA + TRBv3;
 - timing resolution and walk correction;

Optimising time walk in the test experiment;

Conclusions & Outlook.

PADIWA test

The same studies performed with NINO have been repeated for PADIWA.

	PADIWA	NINO
preamplifier	10	10 (x100)
discriminator	FPGA (reprog.)	NINO ASIC

Experimental setup:

- laser pulser(35 ps FWHM, 633 nm, 0.3 γ/event);
- MCP PMT (gain 10^6) + PADIWA + TRB3.

NB: all the problems with thresholds settings now have been solved.

Matteo Cardinali

PADIWA test

Time walk correction?

PADIWA test

Time walk correction?

$$t_{corr} = t_{meas} - m \cdot (\text{ToT}) + q$$

Both FEE cards show similar performances

Time walk optimisation

Problem: no absolute timing in July test experiment (Mainz).

Consequence: no way to extract time walk parameters from data!

We used the parameters obtained from the laser tests even if the conditions were different (e.g. HV/gain, thresholds).

$$t_{corr} = t_{meas} - m \cdot (\text{ToT}) + q$$

fundamental parameter

Varying m in order to find the best timing resolution

Time walk optimisation

Problem: no absolute timing in July test experiment (Mainz).

Consequence: no way to extract time walk parameters from data!

We used the parameters obtained from the laser tests even if the conditions were different (e.g. HV/gain, thresholds).

First test with laser;

there is a minimum.

Time walk optimisation

Beam time:

- algorithm applied to two different MCPs;
- starting point (0) = laser parameter;

Time-walk Correction: test experiment

- minimum found in both cases;
- the method could be used for each pixel;
- new timing resolution "record" ~40 ps;
- we still need a way to "optimise" the offset.

- Apply the new coefficients to each pixel;
- Look for timing resolution of two pixels sitting in different MCPs (prototype timing resolution);
- We don't expect a big change because the main contribution is due to the detector itself (~100 ps from G.Kalicy MC);

- Apply the new coefficients to each pixel;
- Look for timing resolution of two pixels sitting in different MCPs (prototype timing resolution);
- We don't expect a big change because the main contribution is due to the detector itself (~100 ps from G.Kalicy MC);

- PADIWA studies:
 - ✓ full characterisation under realistic conditions;
 - ✓ good timing resolution (similar to NINO).
- Test beam analysis:
 - ✓ Time walk optimisation works fine;
 - ✓ 40 ps timing resolution achieved;
 - ✓ measured ~94 ps contribution from photon propagation in the prototype.
- Tune simulation with our setup;
- ♦ ...We are done ⇒ write contribution for TDR?

Matteo Cardinali 11/03/14

13

Thank you

Matteo Cardinali 11/03/14 14