Status of FTOF detectors

Petersburg Nuclear Physics Institute (PNPI) S.Belostotski

PANDA collaboration meeting March 2014

Bicron 408

(recommended for large TOF counters) Rise time $0.9 \,\mathrm{ns}$ Decay time 2.1 ns 1/e light attenuation length 210cm Wavelength of max emission 425nm

Fast PMTs (hamamtsu) R4998 1" (R9800), R2083 2" (R9779) Anode pulse rise time 0.7-1.8ns TTS 250-370ps (FWHM) Gain $1.1-5.7 \times 10^{6}$ W.m. emission 420nm HV 1500-3500v

Dipole TOF positioned inside the dipole magnet gap as

planned for TDR

Projected 2x10 scintillation slabs 80÷100x10x2.5cm readout from each end with Electron PMT 187

Diameter	30mm
Photocathode	20mm
Anode pulse rise time	1.4ns
TTS	≈500ps
Gain	5x10 ⁵
W.m. emission	380nm
(80%	at 420nm)
HV	1800v

Caveat: have been tested in magnetic field less 0.5T

Alternative solution SiPMs provided timing resolution better than 100ps

Caveat: radiation hardness??

Not sensitive to mag. F.(!)

SiPMs(hamamatsu)S10931-50p, S10931-100pactive area 3x3mmPixels 3600Gain $7.5x10^5 - 2.4x10^6$ W.m. emission 440nmTTS 0.5-0.6ns(FWHM)

Selected aspects

of Monte Carlo

Studies

Comment: a good event start of 50ps provides if: independent start counter available (no momentum info needed) or RICH info or kinematical criteria

FTOF wall slab count rates

p̄ beam momentum, GeV/c	Pion rate, 1/s	Kaon rate, 1/s	Proton rate, 1/s	Antiproton rate, 1/s
2	3.9×10 ⁵	2×10 ³	1.2×10 ⁴	1.07×10 ⁶
5	6×10 ⁵	7.8×10 ³	3.8×10 ⁴	9.5×10 ⁵
15	9.6×10 ⁵	4.7×10 ⁴	3.2×10 ⁴	8.2×10 ⁵

@ HESR cycle averaged Luminosity 10³² cm²s⁻¹

@ 15 GeV/c pbar beam normalized to 10⁷/s interactions

all charged particles

total pbar rate

pbar from elastic scattering

charged particles produced in vacuum pipe

e⁺e⁻ pairs produced by gammas from pi⁰ decay in the target

FTOF wall and barrel TOF multiplicities

 $0.14 \times 10^6 pp$ interactions generated

No dedicated start counter !

FTOF wall and barrel TOF interplay

MC Simulation of Λ , Λ event selection Under study are $\overline{p} + p \rightarrow \overline{\Lambda} + X$, $\overline{\Lambda} \rightarrow \overline{p} + \pi^+$ and $p + p \rightarrow \Lambda + X$, $\Lambda \rightarrow p + \pi^{-}$ with DPM generator, PANDA Particle momentum smearing root framework of $\frac{\sigma p}{\sigma} = 0.01$ $0.72 \times 10^6 pp$ interactions (a)10 GeV Time-of-flight smearing of Generated are $\pi^-,\pi^+,K^-,K^+,\overline{p},p,\overline{\Lambda},\Lambda$ $\sigma TOF = 50 \, ps$ Track length smearing Produced particles are of tracked through the solenoid $\sigma L = 1 cm$ and dipole magnetic fields Production/decay vertex and detected with FTOF wall separation scintillation counters

Generated Lambda hyperons

acceptance of FS $\pm 10 \deg$. hor. $\pm 5 \deg$. ver. $\rightarrow \Omega_{FS} = 0.09 sr$

	Generated by DPM	Detected by FTOF wall	detection efficiency
π^{-}	880346	172188	0.195
π^+	877255	150440	0,171
K -	30179	5820	0.192
K^+	26811	2863	0.107
p	453293	202174	0.446
p	398323	51241	0.129
$\overline{\Lambda} \rightarrow \overline{p} + \pi^+$	19874	3840	0.193
$\Lambda \rightarrow p + \pi^{-}$	19518	≈100	$\approx 5 \cdot 10^{-3}$

Lambda Hyperon Event Selection

Experimental Study

of Timing Resolution

and

Prototyping

SiPM timing resolution

SiPM timing resolution is about 150ps

PMT timing resolution using proton beams

PNPI 1 GeV synchrocyclotron

April 2009.

Optimization of slab thickness to 2.5 cm *Nov. 2012*

Time resolution better 100ps *June 2013*

Time resolution better 80 ps

Dec. 2013

Final results on prototyping

PMTs: R4998, R2083, Electron 187

COSY test beam in Juelich

Dec. 2012 test with TRB readout. First "Electron" PMT187 test

Timing resolution measurements at 1 GeV PNPI SC

Hit position and pulse amplitude correction equation

calculated are
$$\tau_{13}, \tau_{14}, \tau_{34}$$

$$\tau_{nk} = t_n - t_k - a(\frac{1}{\sqrt{q_n}} - \frac{1}{\sqrt{q_k}}) - bx - c,$$

x hit position along the scintillation slab,

 $\sigma(x) \simeq 0.5$ mm defined by MWPCs

 t_n, t_k measured with TDC, q_n, q_k measured with QDC,

a,b,c fitting parameters,

 $\delta \tau_{nk}$ timing resolution (sigma of τ -distribution).

Proton energy $E_p=730$ and 900MeV, $\sigma(E_p)$ about 0.5%

B408 thickness 2.5cm Energy deposition 5MeV

```
Scintillation Efficiency
10<sup>4</sup> photons/MeV
```


Timing resolution with R4998 and R2083

Summary of tests using proton beam

Scintillation slab dimensions	Photo multiplier tube	Comments
140 cm × 10 cm × 2.5 cm	Hamamatsu R 2083	75ps Accepted as a prototype for the FTOF wall
140 cm × 5 cm × 2.5 cm	Hamamatsu R 4998	70ps Accepted as a prototype for the FTOF wall
140 cm × 2.5 cm × 2.5 cm	Hamamatsu R 4998	60ps Variant of a prototype with smaller slab width
140 cm × 10 cm × 1.5 cm	Hamamatsu R2083	150ps Projected originally for the FTOF wall
140 cm × 5 cm × 1.5 cm	Hamamatsu R4998	120ps Projected originally for the FTOF wall
140 cm × 2.5 cm × 2.5 cm	Electron PMT 187	80ps Magnetic field protected, tentatively projected for the dipole TOF
100 cm × 10 cm × 2.5 cm	Electron PMT 187	150ps Magnetic field protected, tentatively projected for the dipole TOF

Time resolution R4998 and Electron187 with small scintillator (2x2x2cm) is 50 and 70ps, respectively.

FTOF wall mechanics.

FTOF wall front view

Scintillation counter mechanical components

100

 \bigcirc

ø70

0

 \bigcirc

Cost estimation update

FTOF wall

Plastic scintillators B408 20u.140x5x2.5cm+46u.140x10x2.5	cm 60
k€	
PMTs R9800 1" 600€ 40u. +5u.(spare)	27
PMTs, R9779 2" 900€ 92u.+10u.(spare)	92
Caveat: PMT R9800, , R9779 not on beam tested	
FEE electronics	30
HV power supply	22
Gain monitoring system	9
Supporting structure (design, fabrication)	40
Test stand for mass production	35
Transportation, custom expenses	25
	•••••
	340 k€

Dipole TOF Plastic scintillators B408 20u. 15 PMTs Electr.187 1.5" 1400€ 40u. +5u.(spare) 63 Caveat: PMT 187, to be tested at 2T magnetic field FEE electronics 5 HV power supply 9 Gain monitoring system 5 Supporting structure (design, fabrication) 35 ?? 132 k€

Infrastructure

- PNPI test beam
- PNPI design department (mechanical components drawings)
- PNPY electronic department (expertise, HV)
- PNPI Workshop (fabrication of mechanical components)
- o Test station/preassembly in Juelich

From RRB February 2014 471 k€

PNPI group in PANDA

S.Belostotski	Stanislav	Prof.	Group leader
Gavrilov	Gennadij	Scient.	hardware
Izotov	Anton	Scient	R&D ,hardware, data analysis
Manaenkov	Sergej	Scient	theory, analysis
Miklukho	Oleg	Sen. Scient	R&D instrumentation
Naryshkin	Yuri	Scient	MC, data analysis
Suvorov	Kirill	PhD stud	MC, hardware
Veretennikov	Denis	PhD stud	MC, hardware, data analysis
Zhdanov	Andrey	Scient	R&D, hardware

Work Package 2014

Monte Carlo simulation In PANDAROOT Framework

- •Study various PID options using TOF/DTOF/BTOF/ChTOF detectors;
- Optimize configuration of FTOF and DTOF in the dipole using benchmark reactions;
- Update rate calculations of Individual FTOF/DTOF slabs at max luminosity;

Design and prototyping

- •Finalize prototyping FTOF counters with TRB;
- Complete study of PM-187 in strong magnetic field for DTOF prototyping, investigate SiPM variant
- •Work out project of GMS
- •Work out project of supporting mechanical structures and cabling

Supporting slides

Global plan for F	TOF / DTOF	design, fabrica	ation and i	nstallation
	20	14-2018		
1. TDR approval, fundin agreement, manufact	g, tender, turing concept.	from 01.01.2014 t	o 31.05.2015	17 months
2.Material procurement final prototype test manufacturing all con detector pre-assembly	nt, manufacturing a ots, nponents, y.	and from 01.06.2015 to	o 31.03.2017	22 months
3.Shipment to FAIR: go inspection, approval f shipment	od inspection , tes or installation,	t from 01.04.2017	to 31.12.2017	9 months
4.Installation at HESR		from 01.01.2018	to 30.09.2018	9 months
5.Commisioning		from 01.10.2018	to 31.12.2018	3 months
M3 9/2014	M8 04/2016	M10 06/2	2017	M11 10/2018

Prototype tested

pre-series accepted

Approval of TDR

Approval for

installation

Ready for beam

SiPM Radiation Hardness Test @ 1GeV PNPI Proton Beam.

- The absolute beam intensity was determined in a standard way by measuring induced radioactivity of irradiated aluminum foils.
- The beam intensity during the tests was varied in the range 1.3 2.1x10⁸ cm⁻²s⁻¹.
- The SiPM sample was not powered!
- Radiation was exposed in 10 successive periods about 10 minutes each. The integrated number of protons passing through the sensitive surface of the SiPM sample with the cross-section of 3x3 mm² was 0.9*10¹¹SiPM parameters (dark noise, amplitude and time characteristics for different values of high voltage) were measured before and after the radiation test using test station with ⁹⁰Sr electron source.

U,V	Ι, μΑ	A, mV	Noise	Noise+ ⁹⁰ Sr
72.06	0.15	40	1550	8700
72.53	0.30	80	4230	18500
72.06	81.0	4	2800	6200
72.53	113.0	6	99000	102000

As it is seen from the table the SiPM was practically killed by this dose the value of which can be taken as upper limit,

- Yet it is important to find out at which dose the sample start malfunctioning,
- It is also important to compare irradiation effect on unpowered and powered samples,
- All this will constitute our experimental program with SiPM samples.

 $\Delta T = 0.056 C^{\circ}$ this is not heat!

SiPM's @ OLYMPUS. DESY TB22.

e-beam 2 GeV

- Both side-mounting and corner-mounting, counters have similar yields,
- •Blind spots exist in both configurations,
- •*Side-mounting is easier,*
- Trigger scan shows, that even one SiPM is enough with proper threshold

Counters: 8mm/2SiPM's, 4mm/2SiPM's (corners), 4mm/2SiPM's (sides), Readout: 25x preamp (electronics workshop, KPH Mainz)

- •QDC spectra to see light yield,
- QDC spectra with prescaled baseline triger mixed into determine gain for each spectrum,
- *Triple coincidence from beam trigger finger conciliators (2 with PMT's, 1 with SiPM)*
- •Quadruple coincidence (3 PMT's, 1 SiPM and single SiPM
 - •efficiency scan,
 - maximum efficiency reachable with single SiPM

Generated/detected with FTOF wall

111

Generated/detected with FTOF wall

Decay length and m_X for Lambda-bar

 $\overline{p} + p \rightarrow \overline{\Lambda} + X$

30

Selection of inclusive Λ and anti Λ

$$\overline{p} + p \to \overline{\Lambda} + X \qquad \overline{p} + p \to \Lambda + X$$

$$\overline{\Lambda} \to \overline{p} + \pi^+ \qquad \Lambda \to p + \pi^-$$
Selection criteria

- pair of hadrons detected with the FTOF wall
- hadrons in a pair are of opposite charge: H^+H^-
- invariant mass calculated under assumption

 $m(H^{-}) = m_p \quad m(H^{+}) = m_{\pi} \quad for \quad \overline{\Lambda} \quad m(H^{-}) = m_{\pi} \quad m(H^{+}) = m_p \quad for \quad \Lambda$

- time-of-flight from decay vertex to FTOF calculated $t = t_c \sqrt{\frac{m^2}{p^2} + 1} \quad t_c = \frac{L}{c} \quad |t(H^+) - t(H^-)| < 100 \, ps$
- Kinematic criterion

$$p(H^{-}) > p(H^{+})$$
 for $\overline{\Lambda}$ $p(H^{-}) < p(H^{+})$ for Λ

Λ and anti Λ invariant masses, hadrons of opposite charge

Λ and anti Λ invariant masses, hadrons of opposite charge, time-of-flight criterion

 Λ and anti Λ invariant masses, hadrons of opposite charge, time-of-flight criterion, kinematic criterion

$$p+p \to \Lambda + X$$

Pairs of hadrons with opposite charge and calculated Δt start <100 ps Pairs of hadrons with opposite charge and calculated Δt_{start} <100 ps and z_2 >0.066 cm

FTOF wall and barrel TOF multiplicities

 $0.14 \times 10^6 \ pp$ interactions generated

37