Status of background simulation studies for the luminosity measurement

Anastasia Karavdina on behalf of the Luminosity Detector group

Institute of Nuclear Physics, University Mainz

Helmholtz-Institute Mainz

Helmholtz Institute Mainz

PANDA Collaboration Meeting, March 2014

measurement at small momentum transfer $t=2p_{CM}^2(1-\cos heta_{cm})
ightarrow$ small heta (3-8 mrad)

measurement at small momentum transfer $t=2
ho_{CM}^2(1-\cos heta_{cm})
ightarrow$ small heta (3-8 mrad)

The Luminosity Measurement Challenges

- Contribution of elastic hadronic part \Rightarrow Luminosity extraction by the fit of θ distribution
- Measurement after magnetic field
- Shift & tilt of beam \Rightarrow registration of tracks in full ϕ range

Our background sources

Our background sources

Exp.Data&Fit from "Classification of $\bar{\rho}p$ induced reaction" (A. Dbeyssi, E. Tomasi-Gustafsson)

<i>P_{beam}</i> , GeV∕c	$\sigma_{tot.inel}, mb$	Number of channels
1.5	62.72 ± 0.16	~ 400
15	40.38 ± 0.34	$\sim 13 \cdot 10^{3}$

 "Physics of antiproton-proton and antiproton-nucleus annihilation processes implemented in Geant4" A.Galoyan [PANDA CM, Sep 2013]

"Geant3-Geant4 Hadronic Response Comparisons" E.Atomssa (PANDA CM, Dec 2013)

 "Recent developments and validation of Geant4 hadronic physics" [J.Phys.Conf.Ser, 396(2012)]

- "Physics of antiproton-proton and antiproton-nucleus annihilation processes implemented in Geant4" A.Galoyan [PANDA CM, Sep 2013]
- "Geant3-Geant4 Hadronic Response Comparisons" E.Atomssa (PANDA CM, Dec 2013)
- "Recent developments and validation of Geant4 hadronic physics" [J.Phys.Conf.Ser, 396(2012)]

Geant4 QGS vs FTF

- BOX (uniform) generator: $ar{p}$ with $heta\in$ [2,12] mrad, $\phi\in$ [0,2 π] rad
- All PANDA sub-systems included (see next slide)
- Reconstruction in LMD

FTF model predicts \sim 2 times more secondaries

Simulation approach

but

- DPM ≠ correct kinematics of final inelastic state
 DPM = correct (inelastic) cross-sections?
 → No, but we still have nothing better
- Geant4 has different physics models (lists) Difference?
 - ightarrow Significant, so pick up the worst one (FTF)

Detector set-up in simulation

* Luminosity-Detector.root(ver.0)

Detector set-up in simulation

- * pndcave.geo,FullSolenoid_V842.root,dipole.geo,beampipe_201309.root
- * Luminosity-Detector.root(ver.0)

Detector set-up in simulation

- * pndcave.geo,FullSolenoid_V842.root,dipole.geo,beampipe_201309.root
- * Luminosity-Detector.root(ver.0)
- * straws_skewed_blocks_35cm_pipe.geo, Mvd-2.1_FullVersion.root, gem_3Stations.root, EMC geo.ver.1, barrel-SciTil_07022013.root, dirc_10_p0_updated.root, DSK, MDT, fts.geo, rich_v2_shift.geo

Total amount of background DPM, without cuts

! At 15 GeV/c $rac{\Sigma Bkg}{Signal}$ \sim 20 % !

secondaries (58.8 %)

Cuts Before back-propagation

 $X(\theta) \& Y(\phi)$ cut with $3\Delta_x$ and $3\Delta_y$ widths

Total amount of background after applied X&Y cuts

Background goes down to \sim 2 % ! Remaining contribution: elastic at large angles

Total amount of background after applied X&Y cuts

Inelastic: \bar{p} with momentum close to P_{beam}

Cuts After back-propagation

We don't measure momentum: P_{beam} value is used in back-propagation

Momentum cut can be used above 1.5 GeV/c

Cuts After back-propagation

Signal

MVA @ 1.5 GeV/c and momentum cut above \Rightarrow M cut

Training on reconstructed DPM elastic events Signal: $|\theta_{MC} - \theta_{REC}| < 3\sigma_{\theta}$, Background: $|\theta_{MC} - \theta_{REC}| > 3\sigma_{\theta}$

Boosted Desicion Tree

- good performance «out of box»
- response cut at 0: 0.5% signal loss
 95.4% bkg rejection

Total amount of background after applied M cut

Background goes down to 1 % !

Total amount of background after applied M cut

Signal efficiency °_104 ₩ after X&Y cut 102 after M cut 100 1 98 96 94 92 90 12 14 P_{beam}, GeV/c 2 6 8 10 4

> Background goes down to 1 % ! Efficiency close to 100 %

$$rac{dN}{d heta} = L \cdot \left(rac{d\sigma}{d heta} \cdot \epsilon
ight) \bigotimes heta_{RES}$$

N - number of events ϵ - efficiency

- σ cross section
- L luminosity

 ϵ - efficiency $heta_{RES}$ - resolution function

P_{beam} 4.06 GeV/c (DPM, elastic only)

Cut	Backgroud, %	Δ_{syst} , %
No	6.75 \pm 0.4	$\textbf{2.42}~\pm~\textbf{0.09}$
X&Y	2.07 ± 0.3	$0.39~\pm~0.08$
M	1.15 \pm 0.2	-0.04 \pm 0.08

Summary

- In GEANT4 FTF model predicts more secondaries
- Background challenge: signal-like behavior
- Help of variable correlations (dipole)
- Suppression 10-20% ightarrow 2% ightarrow 1%
- Main (remaining) contribution: elastic at large angles

Plans

- \bullet DPM \rightarrow FTF as inelastic background generator
- Synchronization with PANDA (time-based simulation)

Thank you for attention!

Just in case ...

Without Dipole Field

Total Background @4.06 GeV/c: 14.99 ± 1.81 % @15 GeV/c: 48.50 ± 6.44 %

The Luminosity Detector Design

X&Y cut with $3\Delta_x$ and $3\Delta_y$ widths

X&Y cut with $3\Delta_x$ and $3\Delta_y$ widths

Exp.Data&Fit from "Classification of $\bar{p}p$ induced reaction" (A. Dbeyssi, E. Tomasi-Gustafsson)

<i>P_{beam}</i> , GeV∕c	$\sigma_{tot.inel}, mb$	Number of channels
1.5	62.72 ± 0.16	\sim 400
15	40.38 ± 0.34	$\sim 13 \cdot 10^{3}$

Results with DPM True variables distributions (15 GeV/c): inelastic (no cuts)

34 / 27

Training on reconstructed DPM elastic events Signal: $|\theta_{MC} - \theta_{REC}| < 3\sigma_{\theta}$, Background: $|\theta_{MC} - \theta_{REC}| > 3\sigma_{\theta}$

