

PANDA Collaboration Meeting Computing Session March 2014, GSI

K. Götzen, D. Kang, R. Kliemt, F. Nerling

Status Report about to be released

Present status of the PANDA software trigger

K. Götzen, D. Kang, R. Kliemt, F. Nerling

March 5, 2014

Abstract

This note presents the current status of the PANDA software trigger project. Apart from the present results obtained from Monte Carlo simulated events for various PANDA physics channels of interest, the task is defined and intersections to the DAQ and detector projects are pointed out.

Contents

1	Introduction and motivation							
2	Definition of the Software Trigger Task 2.1 Online Trigger System Overview 2.2 Software trigger within PANDA software framework 2.3 Approaches by other experiments 2.3.1 E835 charged trigger 2.3.2 LHCb High Level Trigger	3 3 4 5 5 5						
3	Current status of event reconstruction in Panda	7						
4	Physics channels under investigation							
5	Status of present studies and results 5.1 Observables for filtering events and optimisation of cuts 5.2 Event based efficiency and cross tagging 5.3 Results from Toy Monte Carlo studies 5.4 Results from full MC (PandaRoot, Release Jan 2014) 5.5 Results from TMVA method 5.5.1 Introduction to the TMVA application applied 5.5.2 Results from TMVA application 5.6 Discussion of present results	12 13 14 15 22 27 27 29 34						
6	Next and further steps 6.1 Software trigger related 6.2 Physics and Priority related 6.3 Computing (PandaROOT) related 6.4 DAQ related	36 36 36 36 36						
7	7 Summary and outlook							
8	8 Appendix							

58 pages (including appendix)

Definition of Software Trigger Task

Duties of the Software Trigger Group

- Find principle potential by starting from idealised conditions
- Identify observables allowing signal/background separation
- Develop algorithms suppressing data rate at high efficiencies
- Determine performance for different scenarios

Connected issues

- Define a complete list of physics channels
- Develop realistic online-like reconstruction
 (→ time-based simulation + event building + online reco algo's)
- Implement selection algorithms on appropriate online compute elements like FPGA, GPU, ...
- Acquisition and handling of the information necessary to perform selection (DAQ level)

Toy & Full MC

Assumption: tracking, neutral reco, PID & event building works

- Toy MC (50k each signal, 500k DPM)
 - Find principal potential under defined conditions
 - Tracking: $\varepsilon_{trk} = 95\%$, $\Delta p/p = 5\%$, $\Delta \theta = \Delta \phi = 1$ mrad
 - PID: $\epsilon_{PID} = 95\%$, mis-ID = 5%
 - Neutrals: $\Delta E/E = 5\%$, $\Delta \theta = \Delta \phi = 3$ mrad
- Full MC (500k each signal, 1M DPM)
 - More realistic, but stick to the current sotware
 - PandaROOT release/jan14, external packages apr13
 - Tracks: p > 100 MeV/c
 - Neutrals: E > 100 MeV
 - PID: P > 10%

Full MC PID

• Particle Identification: P > 10%

Hadron PID worse than before due to often missing DIRC info

Channel List

• 10 Channels under investigation

Physics topic	Reaction channel	Code	Trigger	Tag
Electromagnetic	$p\bar{p} \rightarrow e^+e^-$	ee	$p\bar{p} \rightarrow e^+e^-$	e^+e^-
Exotics	$p\bar{p} \rightarrow \phi_{(1)}\phi_{(2)}; \phi_{(1)} \rightarrow \text{trigger}, \phi_{(2)} \rightarrow X$	Phi	$\phi \to K^+ K^-$	ϕ
Charmonium	$p\bar{p} \to \eta_c \pi^+ \pi^-; \eta_c \to \text{trigger}$	Etac	$\eta_c \to K_S K^- \pi^+$	η_c
	$p\bar{p} \to J/\psi \pi^+\pi^-; J/\psi \to \text{trigger}$	J2e	$J/\psi \to e^+e^-$	$J/\psi(2e)$
	$p\bar{p} \to J/\psi \pi^+\pi^-; J/\psi \to \text{trigger}$	J2mu	$J/\psi \to \mu^+\mu^-$	$J/\psi(2\mu)$
Open charm	$p\bar{p} \to D^0 \overline{D^0}; D^0 \to \text{trigger}; \overline{D^0} \to X$	D0	$D^0 \to K^- \pi^+$	D^0
	$p\bar{p} \to D^+D^-; D^+ \to \text{trigger}, D^- \to X$	Dch	$D^+ \to K^- \pi^+ \pi^+$	D^+
	$p\bar{p} \to D_s^+ D_s^-; D_s^+ \to \text{trigger}, D_s^- \to X$	Ds	$D_s^+ \to K^+ K^- \pi^+$	D_s^+
Baryons	$p\bar{p} \to \Lambda\overline{\Lambda}; \Lambda \to \text{trigger}; \overline{\Lambda} \to X$	Lam	$\Lambda \to p\pi^-$	Λ
	$p\bar{p} \to \Lambda_c \overline{\Lambda}_c; \Lambda_c \to \text{trigger}; \overline{\Lambda}_c \to X$	Lamc	$\Lambda_c \to p \mathrm{K}^- \pi^+$	Λ_c
Background	$p\bar{p}$ generic (DPM)	DPM	—	_

• Data sets at 4 different center-of-mass energies

$\sqrt{s} [\text{GeV}]$	$p_{\bar{p}} \; [\text{GeV}/c]$	ee	\mathbf{Phi}	Etac	J2e	J2mu	D0	Dch	\mathbf{Ds}	Lam	Lamc	DPM
2.4	1.91	Х	Х	_	_	_	_	_	_	Х	_	Х
3.77	6.57	Х	Х	Х	Х	Х	Х	Х	_	Х	_	Х
4.5	9.81	Х	Х	Х	Х	Х	Х	Х	Х	Х	_	Х
5.5	15.15	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Strategy

Event Generation

- Signal
- Background

Simulation & Reconstruction

Event Filtering

- Combinatorics
- Mass Window Selection
- Trigger Specific Selection
 → Event Tagging

Global Trigger Tag

Event Based Efficiency

- All presented efficiencies are event based
- In general: $\varepsilon_{tot} < \sum \varepsilon_{trig}$
- Four different cases:
 - 1. Trigger T_X tags due to correctly reconstructed candidate X
 - 2. T_X tags due to random cand. form event containing signal X

εχ

- 3. $T_{\rm v}$ tags due to random cand. from event containing signal X
- 4. T_{x} tags due to random cand. from background

Selection Optimisation

- Four different selection approaches have been studied
 - Preselection
 - Combinatorics
 - Mass window cut $\pm 8\sigma$ around nominal mass
 - High Signal Efficiency (manually)
 - Retain 90% of efficiency per trigger line w.r.t. preseletion
 - High Background Suppression (manually)
 - Reject 99.9% DPM in total (all triggers simultaneous)
 - TMVA based
 - Classification problem in multi-dimensional parameter space
 - Proper handling of correlations between observables
- Each trigger line @ each energy \rightarrow individual optimisation!

Observables

O(100) event and candidate related observables considered

Short cut	Description	Short cut	Description
e, px, py, pz	components of 4-vector for composite/daughters (lab)	sumpc	sum of momenta of charged particles in event (cms)
ecm, pxcm, pycm, pzcm	components of 4-vector for composite/daughters (cms)	sumpel	sum of momenta of charged particles in event (lab)
р	momentum p of reconstructed candidate/daughters (lab, cms)	sumen	sum of energies of neutral particles in event (cms)
pcm	momentum p of reconstructed candidate (cms)	sumenl	sum of energies of neutral particles in event (lab)
pt	transvers momentum p_t of reconstructed candidate/daughters	sumpt	sum of transverse momenta of all particles in event (cms)
tht, phi	angles of candidate/daughters (lab)	sumptl	sum of transverse momenta of all particles in event (lab)
thtcm, phicm	angles of candidate/daughters (lab, cms)	sumpte	sum of transverse momenta of charged particles in event (cms)
pide, pidmu, pidpi, pidk, pidp	PID probabilities of daughters	sumptel	sum of transverse momenta of charged particles in event (lab)
oang, decang	opening/decay angle of 2-body candidates	sumetn	sum of transverse energies of neutral particles in event (cms)
pocvx, pocvy, pocvz, pocqa	Vertex quality of POCA finder for charged daughters	sumotnl	sum of transverse energies of neutral particles in event (lab)
various	if daughter is π^0 , detailed information about itself and the two photons	sumetor amotio	sum of transverse memory of all particles in event (ab)
various	if daughter is K_S^0 , detailed information about itself and the two pions	sumptos, sumptio	sum of transverse momenta of an particles with $p_t > [0.5, 1.0] \text{ GeV}/c$
npart	multiplicity of all particles in event	sumpc05, sumpc10	sum of momenta of charged particles with $p > [0.5, 1.0] \text{ GeV}/c$ (cms)
nneut	multiplicity of neutral particles in event	sumpc051, sumpc101	sum of momenta of charged particles with $p > [0.5, 1.0]$ GeV/c (lab)
nchrg	multiplicity of charged particles in event	sumen05, sumen10	sum of energies of neutral particles with $E > [0.5, 1.0]$ GeV (cms)
npide	multiplicity of electrons	sumen05l, sumen10l	sum of energies of neutral particles with $E > [0.5, 1.0]$ GeV (lab)
Inpide	multiplicity of electrons with loose PID $(P > 0.25)$	$^{\rm thr}$	Event shape: Magnitude of thrust (cms)
l1npide	multiplicity of electrons with loose PID $(P > 0.25)$ and $p > 1 \text{ GeV}/c$	sph	Event shape: Sphericity (cms)
tnpide	multiplicity of electrons with tight PID $(P > 0.5)$	cir	Event shape: Circularity (cms)
t1npide	multiplicity of electrons with tight PID $(P > 0.5)$ and $p > 1 \text{ GeV}/c$	apl	Event shape: Aplanarity (cms)
vtnpide	multiplicity of electrons with very tight PID $(P > 0.9)$	pla	Event shape: Planarity (cms)
	last 6 variables also for muons, pions, kaons, protons	fw1	Event shape: 1. Fox-Wolfram Moment $R_1 = H_1/H_0$ (cms)
np05,, np50	multiplicity of particles with $p > [0.5, 1.0, 2.0, 3.0, 4.0, 5.0] \text{ GeV}/c \text{ (cms)}$	fw2	Event shape: 2. Fox-Wolfram Moment $B_2 = H_2/H_0$ (cms)
np05l,, np50l	multiplicity of particles with $p > [0.5, 1.0, 2.0, 3.0, 4.0, 5.0] \text{ GeV}/c$ (lab)	fw3	Event shape: 3 Fox-Wolfram Moment $R_2 = H_2/H_0$ (cms)
npt05,, npt30	multiplicity of particles with $p_t > [0.5, 1.0, 1.5, 2.0, 2.5, 3.0] \text{ GeV}/c$	fw4	Event shape: 4. Fox Wolfram Moment $R_3 = H_3/H_0$ (ems)
nne003l,, nne05l	multiplicity of neutral part. with $E > [0.03, 0.05, 0.1, 0.5]$ GeV (lab)	fw5	Event shape: 5. For Wolfram Moment $P_{4} = H_{4}/H_{0}$ (cms)
ncp005,, ncp10	multiplicity of charged part. with $p > [0.03, 0.05, 0.1, 0.5]$ GeV/c (cms)	1w0	Event shape. 5. Fox-wollfall Moment $h_5 = H_5/H_0$ (clus)
ncp005l,, ncp10l	multiplicity of charged part. with $p > [0.03, 0.05, 0.1, 0.5]$ GeV/c (lab)		
pmax	maximum particle momentum in event (cms)		
pmaxl	maximum particle momentum in event (lab)		
ptmax	maximum transvers particle momentum in event		
pmin	minimum particle momentum in event (cms)		
pminl	minimum particle momentum in event (lab)		
ptmin	minimum transvers particle momentum in event		
prapmax	maximum pseudorapidity of a particle in event		

Identification of Selection Observables

Observable ranking (hint for manual optimisation):

- Example: D_s@5.5 GeV
- Fixed efficiency (e.g. 98%)→ ranking by best background suppression

• Fixed suppression (e.g. 98%) \rightarrow ranking by best signal efficiency

Selection Example

D[±] trigger on D[±]/DPM data @ 5.5 GeV: $\varepsilon_{sig,ini} = 79.4\%$

Toy MC – High Efficiency Algorithms

\sqrt{s}	Trigger	Selection	$\epsilon_{ m sig}$	$\epsilon_{ m bg}$
2.4	$p\bar{p} \rightarrow e^+e^-$	-	79.4	0.009
2.4	$\phi(K^+K^-)$	pmax < 0.6 & phipcm > 0.55 & phipcm < 0.7	84.0	0.041
2.4	$\Lambda(p\pi^{-})$	abs(lampcm-0.44) < 0.04 & fw1 > 0.1 & fw2 > 0.1	82.6	0.028
3.77	$p\bar{p} \rightarrow e^+e^-$	-	79.2	0.001
4.5	$D^0(K^-\pi^+)$	abs(d0pcm-1.27)<0.13 & ptmax>0.64 & d0e>2.7	76.5	0.235
4.5	$D^{+}(K^{-}\pi^{+}\pi^{+})$	abs(dpcm-1.255) < 0.105 & de > 2.6 & ptmax > 0.48 & dtht < 0.33	72.4	0.483
4.5	$D_{s}^{+}(K^{+}K^{-}\pi^{+})$	abs(dspcm-1.095) < 0.096 & dse > 2.9 & ptmax > 0.39 & dstht < 0.28	73.7	0.311
4.5	$\Lambda(p\pi^{-})$	lampcm>1.7 & fw2>0.75 & lamtht>0.09 & fw4>0.5 & pmax>1.4	80.7	0.013
5.5	$p\bar{p} \rightarrow e^+e^-$	-	78.9	0.000
5.5	$\phi(K^+K^-)$	thr>0.955 & phipcm>2	87.1	0.001
5.5	$\eta_c(K_S K^- \pi^+)$	ptmax>0.75 & pmax>1.1 & sumptc>2.8 & sumpc>4	65.6	0.115
5.5	$J/\psi(e^+e^-)$	sumptc>2.1 & pmax>1.5	77.2	0.010
5.5	$J/\psi(\mu^+\mu^-)$	sumptc>2.1 & pmax>1.5	79.7	0.010
5.5	$D^{0}(K^{-}\pi^{+})$	d0pcm>1.84 & sumpt>2.1 & d0e>2.1 & ptmax>0.8 & d0tht<0.45	77.1	0.074
5.5	$D^{+}(K^{-}\pi^{+}\pi^{+})$	abs(dpcm-2.05) < 0.2 & dp > 2 & dpt > 0.5 & ptmax > 0.5	71.6	0.165
5.5	$D_{s}^{+}(K^{+}K^{-}\pi^{+})$	abs(dspcm-1.96) < 0.24 & ptmax > 0.55 & dse > 3	73.0	0.151
5.5	$\Lambda(p\pi^{-})$	fw2>0.87 & sumptc>0.9 & lampcm>2.2 & fw1>-0.1	82.5	0.004
5.5	$\Lambda_c(pK^-\pi^+)$	abs(lamcpcm-1.54)<0.16 & fw1>-0.05 & lamcp>3.3 & sumptc>1.3	72.1	0.493

The 10 Trigger Lines (e.g. D_s data @ 5.5GeV)

• Each plot → invariant mass of trigger specific candidates

MC truth matched spectrum

Toy MC Example – Preselection

Toy MC Example – High Efficiency

Toy MC Example – High Suppression

K. Götzen

PANDA CM Mar. 2014

Toy MC – Efficiency Summary

Toy MC - Efficiency - mass cut only

Toy MC - Background fraction

Toy MC – Relative Efficiencies

Toy MC - Efficiency - mass cut only

Toy MC - Background fraction

Full MC – Efficiency Summary

Full MC – Relative Efficiencies

Interesting observation...

→ High eff@loose criteria due to non-MCT combinatorics!

PANDA CM Mar. 2014

Summary/Conclusion

- Background level increases with cms-energy
- Individual selection algorithm for each trigger at each energy
- Background reduction of 1/1000 can be reached, but at cost of signal efficiency
- Additional trigger lines costs individual efficiency
- Open charm, charmed baryons and non-leptonic charmonium are more difficult to separated from background
- Cross tagging effect could be important, strongly depending on full trigger system configuration

Open issues/next steps

- Software Trigger related
 - Phase space distortion after triggering?
 - Add missing physics cases (Hypernuclei, in-matter phys.)
 - Triggering with sparse information possible?
- Physics related
 - Final/complete list of trigger lines
 - Always simultaneous tagging or different configurations?
 - Robustness of triggers \rightarrow alternative background generator
- Computing/DAQ related
 - Time-based simulation + real event building
 - Algorithms suitable for online reconstruction
 - Data flow management (e.g. 0MQ)
 - Implementation of algorithms on FPGA/GPU

BACKUP

Software Trigger within Trigger System

Full MC Tracking - Discrepancy!

Current tracking efficiency lower than in STT TDR (target pipe region taken out by $||\phi| - 90^{\circ}| > 4^{\circ}$ for plots below)

Full MC Example – Preselection

K. Götzen - PANDA Monthly

Full MC Example – High Efficiency

Feb. 28, 2014

K. Götzen - PANDA Monthly

Full MC Example – High Suppression

Feb. 28, 2014

K. Götzen - PANDA Monthly