Status of the CALIFA detector for R³B

A. Ignatov (TU Darmstadt) for the R³B collaboration and CALIFA WG

Bundesministerium für Bildung und Forschung

Work at TUD supported by BMBF (06DA9040I and 05P12RDFN8) and LOEWE / HIC for FAIR

DEWE

Helmholtz International Center

Exzellente Forschung für Hessens Zukunft

CALIFA @ **R**³**B** (CALorimeter for In Flight detection of γ rays and high energy charged pArticles)

ر ملنات

CALIFA @ **R**³**B** (CALorimeter for In Flight detection of γ rays and high energy charged pArticles)

- Sum energy for the invariant mass analyses and energy of individual particles (γ and protons)
- Large dynamic range: from 100keV to 300MeV
- High efficiency and energy resolution (5-6% Δ E/E @ 1MeV γ)
- Light charged particles resolution ~2%
- Proton γ separation for 1 30 MeV

- Two parts: Barrel and the EndCap
- Based on scintillation detectors
- Granular design with minimum dead volume

Outline

- Scintillators and readout
- Electronics
- Gain monitoring
- Mechanics
- Barrel Demonstrator

- Requirements
- Possible solutions
- Prototypes testing

CALIFA Barrel scintillators and readout

HAMAMATSU S8664-1010-2CH

AMCRYS

First APDs and crystals already delivered and are being tested!

- Test of the APD (noise threshold, resolution, optimum V, T calibration)
- Test of the crystal (dimensions and weight control, visual inspection, light output uniformity, variation of light output)

CALIFA Barrel – APD

21.02.2014 | HIC for FAIR Detector Systems Networking Workshop | A. Ignatov | IKP TU Darmstadt | 6

CALIFA Barrel - APD

CALIFA Barrel – CsI(Tl) crystals

Non uniformity of the light output test Focusing and attenuation in interplay 1.02 ******* -1 a) $\delta L(E) = 1.75\%$ Deviation in Light Response 0.98 b) $\delta L(E) = 3.60\%$ 0.96 0.94 CsH(Tl) LO 8LO=0 1.00 a) 8LO=5% 0.92 0.95 SID=10% 0.90 50 mm 100 mm 0.9 25 175 200 50 75 100 125 150 Proton Energy MeV Lapping is used to retain the uniformity

NULO is characterized by $(LO_{max} - LO_{min}) / Lo_{ave}$ and is required to be <5% with the target value 3% LO variation between crystals < 15%

CALIFA Barrel APD + CsI(TI)

CALIFA Barrel electronics

Dedicated electronics

Electronics and readout development done by GSI & TUM

CALIFA Barrel gain monitoring

first prototype developed with Mitsubishi

- 1mm diameter POF
- 5m bundle part
- 15cm individual fibers

CALIFA Barrel gain monitoring

21.02.2014 | HIC for FAIR Detector Systems Networking Workshop | A. Ignatov | IKP TU Darmstadt | 12

CALIFA Barrel mechanics

CALIFA Barrel Demonstrator

Demonstrator – up to 20% of the final Barrel In beam test planned for this year

	10	$ \longrightarrow $		
	pockets	crystals		
Azimuthal Direction	pockets 2	crystals 4		
Azimuthal Direction	pockets 2 8	crystals 4 16		

Petal is closed by the tile with the interface plate and the box enclosure

prototype is built

- gas flow test
- temperature test
- light test

CEPA including mechanical structure implemented in the R3BROOT

	Rings (15)	θ(5%)
	1	42.6°
	2	40.5°
	3	38.5°
	14	12.7°
BRANCH	15	40.5°
10 modules of 75 cystals		

Internal phoswich solution using 2 decay constants of CsI(TI)

LYSO - CsI(TI) phoswich solution

Energy distribution for 80, 90, 100, 120, 150 and 200 MeV protons

It works! But

good energy resolution only up to 120MeV

intrinsic radioactivity could be a problem for large scale

LaBr3 PSA for particles discrimination

Based on the difference in pulse shape induced by different incident particles

Test at TUD using internal radioactivity of LaBr3

Particle identification by digital PSA F. Crespi et al., NIM A 602, 520 (2009)

Outlook

- In-beam test of the Demonstrator at GSI
- Endcap TDR submitted by the end of the year

Thank you!