
Tracking detectors for R³B

Jacob G. Johansen

IKP. TU Darmstadt

The current R³B tracking

Detectors:

PSP

- ▶ 2D position sensitive Si detectors
- ► Energy + position

POS

- Scintillating plastic + PMT
 - ▶ Time

GFI

- Fibers of scintillating plastic + PMT
- Position

TFW + NTF

- Paddles of scintillating plastic + PMT
- ▶ Time + Energy

Reconstructed values:

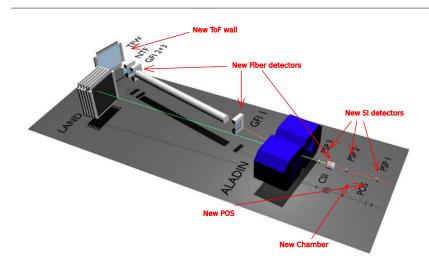
- Incoming mass
- Incoming charge
- Outgoing mass
- Outgoing charge

The need for an upgrade

Mass: e.g. for Sn:

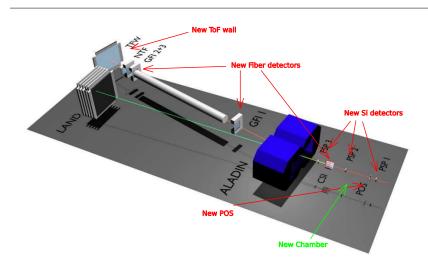
- sigma = 0.4u using 1mm fibers (insufficient)
- Sigma = 0.25u using 0.25mm fibers (just enough)
 Mass reconstruction is limited by material budget → thinner detectors

Charge: e.g. for Sn:

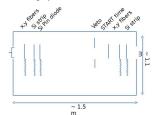

- sigma = 1.0 % (100um Si) (insufficient)
- sigma = 0.5 % (300um Si) (just enough)
- Sigma = 0.5 % (NTF) ongoing analysis Charge resolution is limited by energy straggling → thicker detectors

Rate: 10 kHz

Limited by 2D Position sensitive Si detector, but also TFW (energy)


Detector upgrades for beam-like fragments


Detector upgrades for beam-like fragments

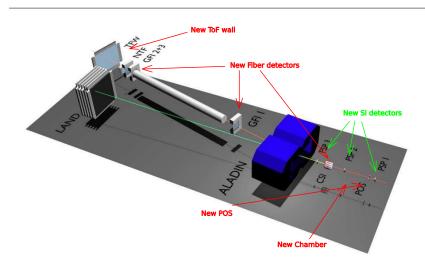


All-in-one Vacuum chamber (Preliminary concept)

Drawing by T. Metz

- All det. before the target in one chamber
- Common cooling for electronics
- Enough space for detectors + electronics
- Detectors easily in/out of the beam-line

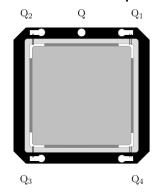
Silicon:


- Primary detector
- Energy knowledge
- Good X position resolution

Fibers:

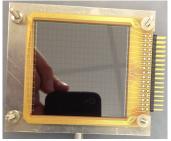
- Si detector calibration
- Small material budget
- No energy knowledge
- Good XY position resolution

Silicon detectors



Silicon detectors - Current ones

Position sensitive Si pin diode


- Active area: 45x45mm²
- ► Thickness 300 μ m

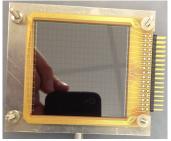
Silicon detectors - New ones

(Thanks to I. Syndikus)

Micron X1

- ▶ 16 position sensitive strips
- ► Active area: 50x50mm²
- ► Thickness 140 μ m (300 μ m)
- Readout: Strück, FEBEX

Comparison


- Faster signals
- Higher rate capacity
- Less energy dependency on position
- High position resolution in 1D
- More channels
- Interstrip (dead?) areas

Silicon detectors - New ones

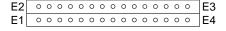
(Thanks to I. Syndikus)

Micron X1

- ▶ 16 position sensitive strips
- ► Active area: 50x50mm²
- ► Thickness $140\mu m$ ($300\mu m$)
- Readout: Strück, FEBEX

Comparison

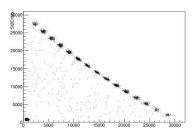
- Faster signals
- Higher rate capacity
- Less energy dependency on position
- High position resolution in 1D
- More channels
- ► Interstrip (dead?) areas


Investigation of interstrip events

(Thanks to I. Syndikus)

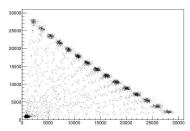
mask 1

mask 2


Investigation of interstrip events: left and right anode of one strip

 E_3

₂


Entries (strip) \approx 3600

Entries ("rest")

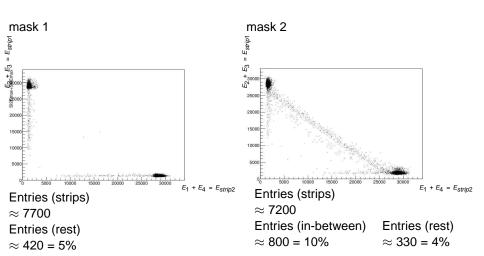
 \approx 230 = 6%

mask 2

Ň

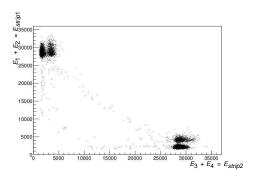
Entries (strips)

 ≈ 4000

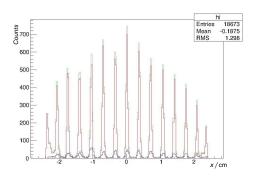

 E_3

Entries ("rest")

 \approx 900 = 18%


Investigation of interstrip events: sum of the anodes of both strips

Investigation of interstrip events: measurement without mask

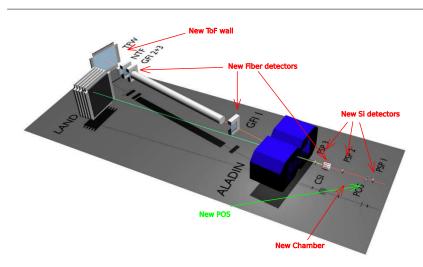

Entries (strips) ≈ 12000

Entries (in-between) $\approx 100 = 0.8\%$

Entries (rest) $\approx 130 = 1.1\%$

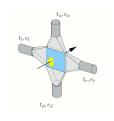
Investigation of interstrip events: position resolution

 $\sigma_x/{\rm mm}$ 0.254 0.235 in-between $\sigma_x/{\rm mm}$ 0.254 0.503 FWHM_x/mm 0.598 0.552 1.184


Investigation of interstrip events: Conclusion

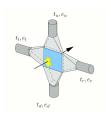
- around 1% of all hits hit the inter-strip region
 - → both position and energy recoverable
 - → resolution around the factor 2 worse
- around 1% of all hits are strange
 - ightarrow might hit the inter-strip region on the other side of the examined strip

POS



POS - Current status

Existing POS:


To be tested:

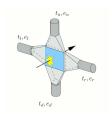
► Aim: ∆t < 10 ps.

POS - Current status

Existing POS:

To be tested:

- ► Aim: Δt < 10 ps.
- refurbished POS
 - No light guides
 - 2 inch PMTs (previous 1 inch)
 - ► 1PMT meas.: Δ t = 14ps

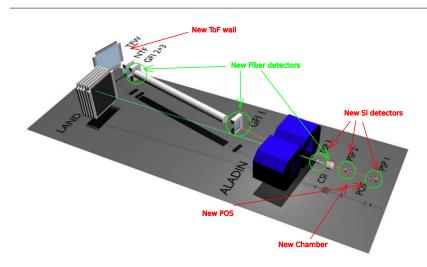

- ▶ Plastic thicknesses: 100 500 μ m
- Readout: CFD and VFTX

No(little) walkeffect \rightarrow Fast online particle ID.

POS - Current status

Existing POS:

LYCCA:



To be tested:

- Aim: Δt < 10 ps.</p>
- refurbished POS
 - No light guides
 - 2 inch PMTs (previous 1 inch)
 - ▶ 1PMT meas.: ∆ t = 14ps
- LYCCA ToF start:
 - ▶ 12 PMT's
 - Ø7.3 cm active area
 - $\Delta t \sim 5$ ps (1 mm thick sheet)
- Plastic thicknesses: 100 500 μm
- Readout: CFD and VFTX

No(little) walkeffect \rightarrow Fast online particle ID.

Current fibers:

- 2 GFI's
 - One layer (1D)
 - Active area: 50x50cm²
 - ▶ 500 1mm fibers
- ► 1 MFI
 - One layer (1D)
 - Active area: 24x26cm²
 - ▶ 1024 0.25mm fibers

Current fibers:

- 2 GFI's
 - One layer (1D)
 - Active area: 50x50cm²
 - 500 1mm fibers
- ► 1 MFI
 - One layer (1D)
 - Active area: 24x26cm²
 - 1024 0.25mm fibers

- 2 fibers before target
 - Two layers (2D)
 - Active area: 5x5cm²
 - 2x256 0.2mm fibers
- 1 fiber after target before GLAD
 - Two layers (2D)
 - Active area: 100x100cm²
 - 2x512 0.2mm fibers
- 1 fiber after magnet
 - One layer (1D)
 - Active area: 24x20.5cm²
 - ▶ 1024 0.2mm fibers
- 1 fiber together with the ToF wall
 - Four layers (2D)
 - Active area: 90x120cm²
 - 4x6084 0.2mm fibers

One layer:

Two layers:

Four layers:

- 2 fibers before target
 - Two layers (2D)
 - Active area: 5x5cm²
 - 2x256 0.2mm fibers
- 1 fiber after target before GLAD
 - Two layers (2D)
 - Active area: 100x100cm²
 - 2x512 0.2mm fibers
- 1 fiber after magnet
 - One layer (1D)
 - Active area: 24x20.5cm²
 - 1024 0.2mm fibers
- 1 fiber together with the ToF wall
 - Four layers (2D)
 - Active area: 90x120cm²
 - 4x6084 0.2mm fibers

One layer:

Two layers:

Four layers:

- 2 fibers before target
 - Two layers (2D)
 - Active area: 5x5cm²
 - 2x256 0.2mm fibers
- 1 fiber after target before GLAD
 - Two layers (2D)
 - Active area: 100x100cm²
 - 2x512 0.2mm fibers
- 1 fiber after magnet
 - One layer (1D)
 - Active area: 24x20.5cm²
 - 1024 0.2mm fibers
- 1 fiber together with the ToF wall
 - Four layers (2D)
 - Active area: 90x120cm² (80x110cm²)
 - 4x6084 0.2mm fibers

One layer:

Two layers:

Four layers:

- 2 fibers before target
 - Two layers (2D)
 - Active area: 5x5cm²
 - 2x256 0.2mm fibers
- 1 fiber after target before GLAD
 - Two layers (2D)
 - Active area: 100x100cm²
 - 2x512 0.2mm fibers
- 1 fiber after magnet
 - One layer (1D)
 - Active area: 24x20.5cm²
 - 1024 0.2mm fibers
- 1 fiber together with the ToF wall
 - Four layers (2D)
 - Active area: 90x120cm² (80x110cm²)
 - 4x6084 0.2mm fibers

Winding machine at GSI:

Three steps to a nice fiber detector:

Winding machine at GSI:

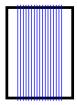
Three steps to a nice fiber detector:

Winding machine at GSI:

Three steps to a nice fiber detector:

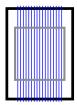
Winding machine at GSI:

Three steps to a nice fiber detector:



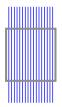
Winding machine at GSI:

Three steps to a nice fiber detector:



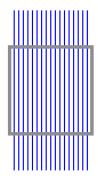
Winding machine at GSI:

Three steps to a nice fiber detector:


- Put the fibers around a large frame
- Glue the detector frame on to the fibers

Winding machine at GSI:

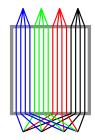
Three steps to a nice fiber detector:


- Put the fibers around a large frame
- Glue the detector frame on to the fibers
- Cut the fibers frome the large frame

How to read out:

- ▶ 27634 fibers
- ► Read out in both ends

The frame:



How to read out:

- ▶ 27634 fibers
- Read out in both ends
- Bundle the fibers
- reduces the number of channels to 944
 - ▶ 2x4x16
 - ▶ 4x32
 - ▶ 2x32
 - ▶ 8x78

The frame:

How to read out:

- 27634 fibers
- Read out in both ends
- Bundle the fibers
- reduces the number of channels to 944
 - 2x4x16
 - ▶ 4x32
 - ▶ 2x32
 - ▶ 8x78

Multi anode PMT (256ch):

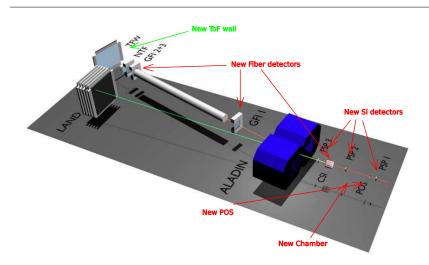
MPPC (3x3mm²):

How to read out:

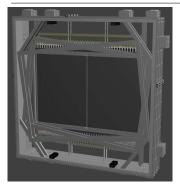
- 27634 fibers
- Read out in both ends
- Bundle the fibers
- reduces the number of channels to 944
 - 2x4x16
 - ▶ 4x32
 - 2x32
 - ▶ 8x78

Multi anode PMT (256ch):

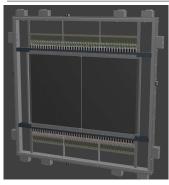
Electronics to be tested:


- Small detectors:
 - ► FEBEX
 - Strück
- Large detector:
 - GEMEX
 - TAMEX

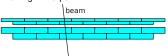
MPPC (3x3mm²):


ToF wall

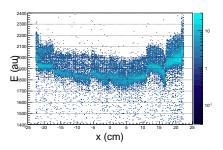
ToF wall - Current status



Drawing D. Körper.


- ► Total active area: 110x80 cm²
- 2x Two layers with vertical paddles
- ▶ 44 paddles pr. layer (40 in total recieved)
- SCIONIX Paddles:
 - ► 80x2.7x0.5cm³
 - 80x2.7x0.3cm³
- No light guides
- Readout: TAMEX (Test boards received)
- Alternative readouts to be tested:
 - QTC
 - PADI

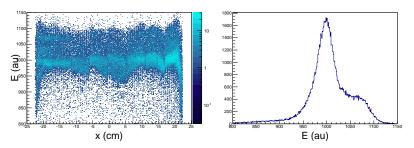
ToF wall - Current status



- Total active area: 110x80 cm²
- 2x Two layers with vertical paddles
- ▶ 44 paddles pr. layer (40 in total recieved)
- SCIONIX Paddles:
 - ► 80x2.7x0.5cm³
 - ▶ 80x2.7x0.3cm³
- No light guides
- Readout: TAMEX (Test boards received)
- Alternative readouts to be tested:
 - QTC
 - PADI

(Data from the s412 experiment (124-134Sn))

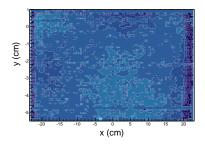
Energy vs. position for sweep-run with empty target:


$$E = \frac{E_x + E_y}{2}$$

No corrections

(Data from the s412 experiment (124-134Sn))

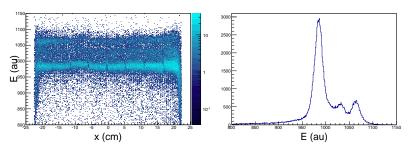
Energy vs. position for sweep-run with empty target:


- $E = \frac{E_x + E_y}{2}$
- ► Correction for Light guide effect
- $ightharpoonup \frac{\sigma}{F_0} = 1.98\%$ (Main peak)

(Data from the s412 experiment (124-134Sn))

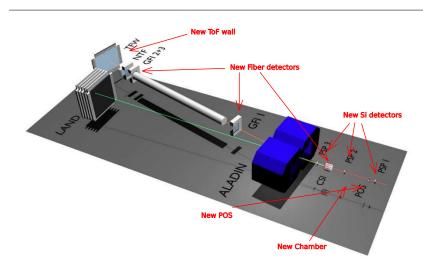
One of the problems:

E_{Sn} across one paddle:



- Area with more/less energy deposited
- Smooth changes in energy changes
- Indication of fluctuations in paddlethickness
- In good agreement with paddle specification

(Data from the s412 experiment (124-134 Sn))


Energy vs. position for sweep-run with empty target (position corrected):

- $E = \frac{E_x + E_y}{2}$
- $ightharpoonup E_0$ of Z=50 scaled to 983keV. (cut on incoming Z)
- $ightharpoonup \frac{\sigma}{F_0} = 0.99\%$ (Main peak)

The R³B tracking detectors

