

w.goeu

Status of the CBM-TRD

Pascal Dillenseger Institut für Kernphysik - Goethe Universität

4th HIC for FAIR Detector Systems Networking Workshop 20-Feb-2014

Outline

The CBM experiment

- CBM @ FAIR
 - General overview
- Transition-Radiation Detector
 - General working principle
- CBM-TRD General overview
 - Purpose and challenges
 - ➡Current design
 - @ SIS 300
 - @ SIS 100

Development of the CBM-TRD

- Prototypes @ IKF
 - Fast readout chambers
 - Radiators

Problems and Solutions

- Gas gain stability
- Summary and Outlook

CBM @ FAIR

The dedicated heavy ion experiment

• Study phase diagram at low temperatures but high densities

Accelerators

- SIS 100:
 - 10.7 GeV/u for U⁹²⁺
 - 5 x 10¹¹ lons per bunch
- SIS 300:
 - 34 GeV/u for U⁹²⁺

Observables

- Charmonium
- Direct photons
- Low mass dileptons
- $\rho\text{-}$ and $\phi\text{-}mesons\dots$

Detector systems:

- MVD
- STS
- RICH
- TRD
- ToF
- EMCal
- MuCh

Short reminder

Transition-Radiation Detector

Working principle of a TRD

Radiator produces TR-photons \rightarrow Readout chamber

TR-probability ~ γ -Factor

---> Electrons produce TR-photons, pions not

Radiator

- Transitions between two materials
 - i.e. gas + foils
 - ~ 20 µm foil
 - ~ 1 mm gas gap
- 100 ~ 400 transitions
- Readout chamber
 - Photon detector

E
Transition Radiation

Image: state st

• Usually gas detector -> adds dE/dx information

X1 Kollaboration. TR-Sceme. url: http://www.kph.kph.uni-mainz. de/X1/images/trsceme.gif.

CBM-TRD

Purose:

- Tracking
- Particle identification (PID)
 - 90 % electron efficiency with a π -as-e misidentification below 1 %

Challenge:

- High particle-density environment
- Hit rates around 100 kHz/cm² expected

Different setups for:

- SIS 100 and SIS 300
- Electron identification and muon tracking

SIS 300

Development of the CBM-TRD

Prototypes @ IKF

GOETHE

UNIVERSITÄT

Radiators

Radiators

Regular foils

Irregular foils

Foams

Fibers

Radiator	Configuration	Material	< [μm]	< [μm]	Thickness [mm]	Transitions
Alice Type	Sandwich	reinforced HF71	8	75	2×8	2×96
R005	Sandwich	Polypropylene fibers	17	50	30	448
		HF71	8	75	2×8	2×96
		Polyethylene Fibers	15	120	103	760
		HF71	8	75	2×8	2×96
R003	Sandwich	Organic Fibers	13	40	226	4200
Foil Radiators	Regular	Polyethylene Foils	20	500	78-182	150-350
Foil Radiators	Regular	Polyethylene Foils	20	700	108-252	150-350
Foil Radiators	Regular	Polyethylene Foils	20	1200	183-247	150-350
Micro-structured Foil	Irregular	POKALON N470	24	700	250	350
Гуре N	Foam	Polyethylene (Cell-Aire)	12	600	260	425
R002	Foam	Polyethylene (hard)	12	600	260	424
R007	Foam	Polyethylene (soft)	12	1000	118	116
HF 110	Foam	Rohacell HF 110	15	75	30	333
Гуре Н	Foam	Polyethylene (Cell-Aire)	12	900	177	388

Performance tests

^{02/20/2014}

Performance tests

02/20/2014

Performance tests

- **Normalized Counts Regular foils** 250 foils
 - 20 µm thick foils
 - 90% electrons
 - 38.1 ± 0.4% π-contamination

PE-foam

- ~ 260 transitions
- ~ 25 µm thick PE
- ~ 1 mm bubble size
- 90% electrons

40.2 ± 0.2 % π-contamination

sults

02/20/2014

Challenge

Electric field between entrance window and anode wires

- —> Electrical field looses homogeneity because of deformations of the foil

UNIVERSITÄT

FRANKFURT AM MAIN

K. Reuß. "Studien zur Ausdehnung des Eingangsfensters des CBM-TRDs". Bachelor Arbeit. Institut für Kernphysi**s ifraukatio M**ärz 2013.

measurement

7

6

5

3

tion (mm)

Procedure to stretch the Mylar® foil

Based on thermal expansion

- Michael Staib, et al.
 - CERN Internal RD51-Note-2011-004
- Foil fixed in a Plexiglas® frame
- Frame is heated up to ≈ 55°C
- ➡Homogeneously stretched foil

~ 1 m² of foil stretched in the frame at 55 $^{\circ}$ C

Before

Inhomogeneous gas gain

Laboratory measurement Setup:

- 59x59 cm² Prototype
- Stretched foil
- Overpressure in the chamber
 - 400 µbar
- ⁵⁵Fe-Source
- ---> Still deformation of the entrance window

> Balle[´], Tanita: Studien zum Einfluss der Ausdehnung des Eingangsfensters auf die Gasverst[¨]arkung des CBM-TRD. Bacherlor Thesis, December 2013

Data correction algorithms:

 Understand quantitive correlation between the gain variations and the overpressure in the chamber

E. Hellbär. "Elektrostatische Simulationsstudien zum Übergangsstrahlungsdetektor des CBM-Experiments". Bachelor Arbeit. Institut für Kern- physik Frankfurt, Jan. 2013. K. Reuß. "Studien zur Ausdehnung des Eingangsfensters des CBM-TRDs". Bachelor Arbeit. Institut für Kernphysik Frankfurt, März 2013.

GOETH

Data correction algorithms:

- Understand quantitive correlation between the gain variations and the overpressure in the chamber
- Measured pion peak

➡ Gas gain

Mechanical stabilisation by the radiator:

- Several foam radiators showed a good PID performance
- Use solid foam as radiator and connect it to the foil

Mechanical stabilisation by the radiator:

- Several foam radiators showed a good PID performance
- Use stiff foam as radiator and connect it to the foil

No radiator

Gain(200µbar)/Gain(400µbar)

With radiator

Gain(200µbar)/Gain(400µbar)

Balle[´], Tanita: Studien zum Einfluss der Ausdehnung des Eingangsfensters auf die Gasverstärkung des CBM-TRD. Bachelor Thesis, December 2013

➡But not a solution for under pressure

Alternating wire geometry:

Field wires between the anode wires

inspired by: D.Varga et al. Nuclear Instruments and Methods in Physics Research A 648 (2011) 163–167

Garfield simulations:

First measurements: Gain map @ ~280 µbar overpressure

S. Gläßel: Bachelor Thesis, to be published.

First measurements: Gain map @ ~280 µbar overpressure

S. Gläßel: Bachelor Thesis, to be published.

Summary and Outlook

Step from small prototypes toward full-size chambers

The built prototypes show good performance in terms of:

- Energy resolution
- PID performance
- Pad response function

. . .

- Full-size prototypes with alternating wire geometry
- CERN-PS Beamtime fall 2014
- Finalising TDR

