Search for the Kaonic Cluster ppK⁻

Analysis of the reaction $p + p \rightarrow p + K^+ + \Lambda$ of HADES and FOPI

Outline

- Introduction
- Exclusive Data Samples
- Phase Space Model Comparison
- Coherent Approach with Partial Wave Analysis
- Upper Limit of ppK⁻ Contribution
- Summary

K–N Interaction

Coupled Channel Calculation

Self Consistent Bethe-Salpeter Equation

T.Hyodo,W.Weise,Phys.Rev.C77 (2008)

T.Hyodo, W.Weise, Phys.Rev.C77 (2008)

Phenomenological Potential

Quasi bound state of K⁻p via attractive I=0 interaction

J. Esmaili, Y.Akaishi, T. Yamazaki Phys.Lett. B 686,23 J. Esmaili, Y.Akaishi, T. Yamazaki Phys.Rev. C 83

Kaonic Cluster

Kaonic Cluster

Theoretical Predictions

	Chiral, energy dependent										
	var. [DHW09, DHW08]	Fad. [BO12b, BO12a]	var. [BGL12]	Fad. [IKS10]	Fad. [RS14]						
BE	17–23	26–35	16	9–16	32						
Γ_m	40–70	50	41	34–46	49						
Γ_{nm}	4–12	30									
	Non-chiral, static calculations										
	var. [YA02, AY02]	Fad. [SGM07, SGMR07]	Fad. [IS07, IS09]	var. [WG09]	var. [FIK+11]						
ΒE	48	50–70	60–95	40–80	40						
Γ_m	61	90–110	45–80	40–85	64–86						
Γ _{nm}	12			~20	~21						

Binding Energy (BE): 10-100 MeV Mesonic Decay (Γ_m) 30-110 MeV Non-Mesonic Decay (Γ_{nm}) 4-30 MeV

Experimental Results on ppK⁻

Kaonic Cluster

J. Beringer Phys.Rev. D86 (2012)

Kaonic Cluster

Experimental Data

The FOPI Experiment

SIS18 GSI Darmstadt

Beam Energy: 3.1 GeV

- Fixed-target Setup
- Full azimuthal coverage, 5°- 110° in polar angle
- Momentum resolution \approx 7% 15 %
- Particle identification via dE/dx & ToF

Trigger Detector – SiAViO: Λ – Enhancement: $14.1 \pm 7.9(stat)^{+4.3}_{-0.6}$

Total Number of exclusive Events: 903

The HADES experiment

High Acceptance Di-electron Spectrometer **GSI**, Darmstadt

Beam Energy: 3.5 GeV

- Fixed-target Setup
- Full azimuthal coverage, 15°-185° in polar angle
- Momentum resolution $\approx 1\%$ 5 %
- Particle identification via dE/dx & ToF

HADES Coll. (G. Agakishiev et al.), Eur. Phys. J. A41 (2009)

Total Number of exclusive Events: 21000

The HADES Data Sample

HADES data

13,000 events of pK⁺A Background from wrong PID $\approx 6\%$ Background from pK⁺ Σ^0 $\approx 1\%$ WALL data 8000 events of pK⁺ Λ Background from wrong PID \approx 11.7% Background from pK⁺ $\Sigma^0 \approx 3\%$

Total Data Set

R. Münzer, PhD Thesis, TUM 2014

E. Epple, PhD Thesis, TUM 2014

Total Data Set

E. Epple, PhD Thesis, TUM 2014

Model Comparison

Phase Space Simulation Partial Wave Analysis

Phase Space Simulation

HADES

Phase Space Model

Partial Wave Analysis

Bonn-Gatchina PWA Framework

A. Sarantsev et.al., Eur.Phys J A 25 2005

Cross-section Decomposition

$$d\sigma = \frac{(2\pi)^4 |A|^2}{4|\mathbf{k}|\sqrt{s}} \, d\Phi_3(P, q_1, q_2, q_3) \;, \qquad P \!=\! k_1 \!+\! k_2$$

A : reaction amplitude $A \propto A_{tr}^{\alpha}$ (s) (Transition amplitude of wave α)

k : 3-momentum of the initial particle in the CM

 $s - P^2 : (k_1 + k_2)^2$

 $d\Phi_3(P,q_1,q_2,q_3)$: invariant three-particle phase space

Parameterization of the Transition

 a_1^{α} Constant amplitude

$$A_{\rm tr}^{\alpha}(s) = \left(a_1^{\alpha} + a_3^{\alpha}\sqrt{s}\right)exp\left(\mathrm{i}a_2^{\alpha}\right)$$

- a_2^{α} Phase
- a_3^{α} Energy dependent amp.

Systematical Analysis

Systematical Scan over different p-p Initial Systems and different inclusion of N* Resonances

	Initial System			J^P	Mass (GeV/c^2)	Width (GeV/c^2)
J^P	$S_{tot} = 0$	$S_{tot} = 1$	$N^{*}(1650)$	$\frac{1}{2}^{-}$	1.655	0.150
L=0	0^+	$\sim tot$	$N^{*}(1710)$	$\frac{1}{2}^{+}$	1.710	0.100
L=1		$0^{-}, 1^{-}, 2^{-}$	$N^{*}(1720)$	$\frac{3}{2}^{+}$	1.720	0.250
L=2	2^+		$N^{*}(1875)$	$\frac{3}{2}$	1.875	0.220
L=3		$2^{-}, 3^{-}, 4^{-}$	$N^{*}(1880)$	$\frac{1}{2}^{+}$	1.870	0.235
			$N^{*}(1895)$	$\frac{1}{2}^{-}$	2.090	0.090

 $N^{*}(1900)$

Resonance in final State

1.900

J. Beringer Phys.Rev. D86 (2012)

0.250

 $\frac{3}{2}^{+}$

Four Best PWA Solutions

PWA Results

Four Best PWA Solutions

Contribution of Production Channels

Sol.	X ² / ndf	Direct pK⁺Λ	N ^{*+} (1650)	N ^{*+} (1710)	N ^{*+} (1720)	N ^{*+} (1875)	N ^{*+} (1880)	N ^{*+} (1895)	N ^{*+} (1900)
А	1.09	0 %	11.3 %	52.4 %	11.8 %	6.3 %	10.9 %	0 %	7.3 %
В	1.09	16.6 %	9.4 %	42.3 %	14.1 %	0 %	9.7 %	0 %	7.9 %
С	1.10	0 %	11.1 %	49.5 %	7.5 %	0 %	14.1 %	9.3 %	8.5 %
D	1.12	13.9 %	6.8 %	43.8 %	11.9 %	5.3 %	9.4 %	0 %	8.9 %
E	1.15	21.1 %	8.6 %	41.9 %	17.6 %	0 %	0 %	0 %	10.8 %

Sol.	X ² / ndf	Direct pK⁺Λ	N ^{*+} (1650)	N ^{*+} (1710)	N ^{*+} (1720)	N ^{*+} (1875)	N ^{*+} (1880)	N ^{*+} (1895)	N ^{*+} (1900)
А	1.09	0 %	11.3 %	52.4 %	11.8 %	6.3 %	10.9 %	0 %	7.3 %
В	1.09	16.6 %	9.4 %	42.3 %	14.1 %	0 %	9.7 %	0 %	7.9 %
С	1.10	0 %	11.1 %	49.5 %	7.5 %	0 %	14.1 %	9.3 %	8.5 %
D	1.12	13.9 %	6.8 %	43.8 %	11.9 %	5.3 %	9.4 %	0 %	8.9 %
E	1.15	21.1 %	8.6 %	41.9 %	17.6 %	0 %	0 %	0 %	10.8 %

Sol.	X ² / ndf	Direct pK⁺Λ	N ^{*+} (1650)	N ^{*+} (1710)	N ^{*+} (1720)	N ^{*+} (1875)	N ^{*+} (1880)	N ^{*+} (1895)	N ^{*+} (1900)
А	1.09	0 %	11.3 %	52.4 %	11.8 %	6.3 %	10.9 %	0 %	7.3 %
В	1.09	16.6 %	9.4 %	42.3 %	14.1 %				
С	1.10	0 %	11.1 %	49.5 %	7.5 %	- 80 70		1650	
D	1.12	13.9 %	6.8 %	43.8 %	11.9 %	60			
E	1.15	21.1 %	8.6 %	41.9 %	17.6 %	50			
						30 - 20 -	C ₁₇₁	₀ + C ₁₇₂₀	
						10			
						0 2,8 2,	85 2,9 2,95	₃ p ₀ (FQ ₂)	I) _{3,15} 3,93 Ge

S. Abd El-Samad et al. Phys.Lett B688 (2010)

Sol.	X ² / ndf	Direct pK⁺Λ	N ^{*+} (1650)	N ^{*+} (1710)	N ^{*+} (1720)	N ^{*+} (1875)	N ^{*+} (1880)	N ^{*+} (1895)	N ^{*+} (1900)
А	1.09	0 %	11.3 %	52.4 %	11.8 %	6.3 %	10.9 %	0 %	7.3 %
В	1.09	16.6 %	9.4 %	42.3 %	14.1 %	0 %	9.7 %	0 %	7.9 %
С	1.10	0 %	11.1 %	49.5 %	7.5 %	0 %	14.1 %	9.3 %	8.5 %
D	1.12	13.9 %	6.8 %	43.8 %	11.9 %	5.3 %	9.4 %	0 %	8.9 %
E	1.15	21.1 %	8.6 %	41.9 %	17.6 %	0 %	0 %	0 %	10.8 %

Sol.	X ² / ndf	Direct pK⁺Λ	N ^{*+} (1650)	N ^{*+} (1710)	N ^{*+} (1720)	N ^{*+} (1875)	N ^{*+} (1880)	N ^{*+} (1895)	N ^{*+} (1900)
А	1.09	0 %	11.3 %	52.4 %	11.8 %	6.3 %	10.9 %	0 %	7.3 %
В	1.09	16.6 %	9.4 %	42.3 %	14.1 %	0 %	9.7 %	0 %	7.9 %
C	1.10	0 %	11.1 %	49.5 %	7.5 %	0 %	14.1 %	9.3 %	8.5 %
D	1.12	13.9 %	6.8 %	43.8 %	11.9 %	5.3 %	9.4 %	0 %	8.9 %
E	1.15	21.1 %	8.6 %	41.9 %	17.6 %	0 %	0 %	0 %	10.8 %

Experimental Data can be described by known sources

Upper Limit of ppK⁻ Contribution

EXA 2014 – Vienna

Robert Münzer

ppK⁻ Upper Limit Determination

- -> ppK⁻ Waves include in BG-PWA
- -> Mass and Width fixed
- -> Background for 5 best solution without ppK⁻
- -> Stepwise increase of Amplitude (a₁)
- -> Phase Parameter free (a₂)
 => Optimal amount of
 Interference

Exclusion limit: Confidence Level (95%) (CL_s)

M(ppK⁻) = 2.305 GeVc⁻² Γ(ppK⁻)=20 MeVc⁻²

ppK⁻Upper Limit Determination

Upper Limit

Measured total cross-section:

 $\sigma_{pK^+\Lambda} = 38.12 \pm 0.43^{+3.55}_{-2.83} \pm 2.67(p+p-error) - 2.9(background) \ \mu b$

Upper limit of ppK⁻ Cross Section:

Г (MeVc ⁻²)	Cross Section (μb)
0+	1.9 – 3.9
1-	2.1 – 4.2
2+	0.7 - 2.1

Production Cross Section $\Lambda(1405)$

$$9.2 \pm 0.9 \pm 0.7$$
 $^{+3.3}$ _{-1.0} µb

HADES coll. (G. Agakishiev et al.) Phys. Rev. **C 87**, 025201 (2013)

Summary

- 13000 (HADES) + 8000 (WALL) + 903 (FOPI) exclusive events $p + p \rightarrow p + K^+ + \Lambda$ reconstructed
- Experimental data cannot be reproduced by Phase Space
- Good explanation by Bonn-Gatchina PWA framework: Strong contribution of N*+ resonances No Additional Signal needed
- Determination of upper limit of the kaonic cluster between 7.4 and 35.9 μb (FOPI) and 0.7 4.2 μb (HADES) .
- Important effect of Interference => No Peak in final spectrum

Future Perspectives

 Combined analysis of results from different experiments at different energies and polarization observables => Application to the DFG accepted

experiment	$\sqrt{s} \; (\text{GeV})$	$\epsilon_{\mathrm{p}K^+\Lambda}$	$\epsilon_{\mathrm{pp}K^+}$	statistics	polar.
COSY-TOF [AS ⁺ 06a]	2.63	84.87	-231.40	791	Ν
COSY-TOF [AS ⁺ 06a]	2.66	114.91	-201.35	1037	Ν
COSY-TOF [Rit13]	2.67	121.56	-194.71	160000	?
COSY-TOF [AS ⁺ 06a]	2.72	171.05	-145.22	4323	Ν
DISTO $[M^+10, Mag01]$	2.75	200.44	-115.83	121000	Y
COSY-TOF [M.R11]	2.75	203.69	-112.58	43662	Y
COSY-TOF [AES ⁺ 10]	2.75	203.69	-112.58	7228	Ν
COSY-TOF [AES ⁺ 10]	2.75	203.69	-112.58	15372	Ν
COSY-TOF [AB+10]	2.79	238.95	-77.32	89684	Ν
COSY-TOF [AESBB ⁺ 13]	2.79	245.70	-70.57	30000	Ν
COSY-TOF [AB+10]	2.83	284.06	-32.21	3322	Ν
COSY-TOF [AES ⁺ 10]	2.83	284.06	-32.21	5791	Ν
COSY-TOF [AES ⁺ 10]	2.87	318.86	2.60	6263	Ν
DISTO $[M^+10, Mag01]$	2.87	318.86	2.60	304000	Y
DISTO $[M^{+}10, Mag01, B^{+}99]$	2.98	430.48	114.21	424000	Y
FOPI	3.06	508.97	192.70	903	Ν
HADES	3.18	629.33	313.06	20000	Ν

AES⁺10: S. Abd El-Samad et al. Phys.Lett B688 (2010) AB⁺10: M. Abdel-Bary et al., Eur.Phys.J A46(2010) AESEB⁺13: S. Abd El-Samad et al., Eur.Phys.J A49(2013) Rit13: J.Ritmann, private communication (2013) AS⁺06a : S. Abd El-Samad et al. Phys.Lett B632 (2006) M⁺10: M. Maggiora et al. Nucl.Phys. A385 (2010) MagO1: M. Maggiora Nucl. Phys. A691 (2001) B+99: F. Balestra et al., Phys.Rev.Lett 83 (1999) Epp14: E.Epple, Diss. TLM 2014

Outlook – Combined Analysis

Thank You

HADES Collaboration

FOPI Collaboration

Backup

EXA 2014 – Vienna Robert Münzer

The Smallest Cluster

Property	Value
charge	+ 1
strangeness	-1
participants	ppK⁻, pn <mark>K</mark> ℃
\mathcal{J}	0-

	Chiral, energy dependent					
	var. [DHW09, DHW08]	Fad. [BO12b, BO12a]	var. [BGL12]	Fad. [IKS10]	Fad. [RS14]	
BE	17–23	26–35	16	9–16	32	
Γ _m	40–70	50	41	34–46	49	
Γ_{nm}	4–12	30				
	Non-chiral, static calculations					
	var. [YA02, AY02]	Fad. [SGM07, SGMR07]	Fad. [IS07, IS09]	var. [WG09]	var. [FIK+11]	
BE	48	50–70	60–95	40–80	40	
Γ_m	61	90–110	45–80	40–85	64–86	
Γ_{nm}	12			~20	~21	

Binding Energy (BE): 10-100 MeV Mesonic Decay (Γ_m) 30-110 MeV Non-Mesonic Decay (Γ_{nm}) 4-30 MeV

Trigger Detector - SiAViO

 Λ – Enhancement: $14.1 \pm 7.9(stat)^{+4.3}_{-0.6}$

R. Münzer et. al. NIM A 745 (2014) 38-49

EXA 2014 – Vienna Robert Münzer

Reconstruction of exclusive Reactions

 $p + p \rightarrow p + K^+ + \Lambda$

EXA 2014 – Vienna Robert Münzer

Inclusive Reconstruction

	Before Refit [cm]	After Refit [cm]
σ_x	3.84	0.09
σ_y	2.98	0.04
σ_z	5.50	0.31

Exclusive Data Sample

Primary K⁺ Selection

Kaon Candidates in RPC and CDC

Exclusive Data Sample

∧ Candidates in all sub detector Combinations

Events 8000 x 112.779 7000 + Signal 6000 Poly. Backgr. 5000 4000 3000 2000 1000 0 1.06 1.08 1.12 1.14 1.16 1.18 1.2 1.22 1.1 InvM(π,p) (GeVc Events 1.112 GeVc-2 5000 14.8 MeVc-2 4000 57 10³ 1736.93 10-4 Siq.p 3000 0.9 S/B 51.3 S/B 2000 1000 0 1.12 1.14 1.16 1.18 1.2 1.22 1.06 1.08 1.1 $InvM(\pi,p)$ (GeVc⁻²)

Exclusive Reconstruction

Exclusive Reconstruction

Exclusive Data Sample

Kinematical Refit

Variation of Track parameters with error

$$\chi^2 = (\vec{\alpha} - \vec{\alpha}_0)^T V_{\vec{\alpha}_0}^{-1} (\vec{\alpha} - \vec{\alpha}_0)$$

$$pvalue = \int_{\chi^2_{fit}}^{\infty} f_{\nu}(\chi^2) d\chi^2.$$

Different Kaon selection

Backup

p < 0.5 GeV/c0.5 GeV/c < p < 0.6 GeV/c p > 0.6 GeV/c Events Events Events 600 χ⁴/ndf = 1.62 x2/ndf = 1.74 x2/ndf = 0.93 160 250 500 140 200 120 400 100 150 300 80 100 60 200 40 50 100 20 0 0 0 0.2 0.4 0.6 0.8 1.2 0.2 0.4 0.6 0.8 1.2 0.4 0.6 0.8 1.2 0 1.4 0 0.2 1.4 M(GeV M(GeV M(GeV $\begin{array}{ll} \mu & = 0.49 \ (0) \ {\rm GeVc^{-1}} \\ \sigma & = 67.4 \ (0.8) \ {\rm MeVc^{-2}} \\ {\rm Sig.} = 1.52 \ (0.05) \ 10^{4} \\ {\rm S/B} = 0.63 \ (0.02) \\ {\rm S^{2}/B} = 0.97 \ (0.07) \ 10^{4} \end{array}$ Events 140 =0.494 (0) GeVc⁻⁴ =28.1 (0.3) MeVc⁻² 0. =0.33 (0.02) 10⁴ B=0.98 (0.09) /B=0.32 (0.05) 10⁴ =0.492 (0) GeVc⁻² =43 (0.6) MeVc⁻² =0.33 (0.02) 10⁸ Events Events 100 300 120 σ 250 Sig S/ S/ 100 80 B=0.72 (0.05) /B=0.24 (0.03) 10⁴ 80 200 60 60 150 40 40 100 20 20 50 0 0 0 ^{1.2} ^{1.4} M(GeV⁻²) ^{1.2} ^{1.4} M(GeV⁻²) ^{1.2} ^{1.4} M(GeV⁻²) 0.8 0.4 0.8 0 0.2 0.4 0.6 1 0 0.2 0.6 1 0 0.2 0.4 0.6 0.8 1

Sideband Analysis

Λ / Σ Separation

Remaining Background

1/14.8.

Particle	Mass	Fit μ	Fit σ	Fit Amplitude
Λ	1115.8	1.1171	0.07	136.35
Σ^0	1192.1	1.185	0.06	11.277
higher Resonance contribution		1.32	0.05	28.8

Exclusive Data Sample

Exclusive Data Sample

Momentum Region	Signal Events	Background Events
0.0 - 0.5 GeV/c	177	146
0.5 - 0.6 GeV/c	150	136
0.6 - GeV/c	577	577
Total	903	859

Angular Distributions

Center-of-mass angle

Gottfried-Jackson Angle

Simulation Packages

Phase Space Simulation

E. Epple,

Diss. TUM (2014)

M. Abdel-Bary et al., Eur.Phys.J A46(2010)

 Transport Modell - UrQMD

- + Experimental Data
- pp -> p K⁺ Λ Phase Space
 Simulation

Robert Münzer

HADES

- + Experimental Data
- pp -> p K⁺ Λ Phase Space
 Simulation

Robert Münzer

+ Experimental Data

pp -> p N*+(1650) Phase Space Simulation

- + Experimental Data
- pp -> p N*+(1700) Phase Space Simulation

- + Experimental Data
- pp -> p N*+(1900) Phase Space Simulation

+ Experimental Data

pp -> p N*+(2190)
 Phase Space
 Simulation

UrQMD Simulation

- + Experimental Data
 - UrQMD Simulations

UrQMD Simulation

- $A = N^*$ (1875) waves enabled (1) / disabled (0)
- $B = N^* (1880) \text{ waves enabled } (1) / \text{ disabled } (0)$
- $C = N^*$ (1895) waves enabled (1) / disabled (0)
- $D = N^*$ (1900) waves enabled (1) / disabled (0)
- $E = pK^+\Lambda$ non resonant waves enabled (1) / disabled (0)
- $F = 5 \qquad \text{Initial proton states:} {}^1S_0, {}^1D_2, {}^3P_0, {}^3P_1, {}^3P_2, {}^3F_3$
 - = 4 Initial proton states: ${}^{1}S_{0}$, ${}^{1}D_{2}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$
 - = 3 Initial proton states: ${}^{1}S_{0}$, ${}^{1}D_{2}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$
 - = 2 Initial proton states: ${}^{1}S_{0}$, ${}^{1}D_{2}$, ${}^{3}P_{0}$
 - = 1 Initial proton states: ${}^{1}S_{0}, {}^{1}D_{2}$
 - = 0 Initial proton states:¹S₀

PWA Results in 4π

EXA 2014 – Vienna Robert Münzer

ppK⁻Upper Limit Determination

Exclusion limit:

$$p_{\mu} > \alpha \left(1 - p_0 \right)$$
$$p_{\mu} = \int_{\chi^2_{signal}}^{\infty} f_{\nu}(\chi^2) d\chi^2$$

Scan of different mass and width $M(ppK^{-}) = 2.205-2.305 \text{ GeV/c}^2$ $\Gamma(ppK^{-}) = 20-80 \text{ MeV/c}^2$ And 5 best solution of PWA w/o ppK⁻

Background Solution: 000113

Bonn-Gatchina PWA

Cross Section for the production of three particles out of a collision of two particle

$$d\sigma = \frac{(2\pi)^4 |A|^2}{4|k|\sqrt{s}} d\Phi_3(P, q_1, q_2, q_3) , \qquad P = k_1 + k_2$$

A - reaction amplitude k - 3-momentum of the initial particle in the CM $s - P^2 = (k_1 + k_2)^2$ $d\Phi_3(P,q_1,q_2,q_3)$ – invariant three-particles phase space

http://pwa.hiskp.uni-bonn.de/

A.V. Anisovich, V.V. Anisovich, E. Klempt, V.A. Nikonov and A.V. Sarantsev Eur. Phys. J. A 34, 129152 (2007)

The decomposition of the scattering amplitude into partial waves can be written as follows:

$$A = \sum A^{\alpha}_{tr}(s) Q^{in}_{\mu_1 \dots \mu_J}(SLJ) A_{2b}(i, S_2 L_2 J_2)(s_i) \times Q^{fin}_{\mu_1 \dots \mu_J}(i, S_2 L_2 J_2 S' L' J) .$$
(2)

S,L,J – spin, orbital mom. and total angular momentum of the pp system S_2,L_2,J_2 – spin, orbital mom. and total angular momentum of the two particle system in fin. state S',L' – spin, orbital mom. between the two particle system and the third particle with four mom. q_i multiindex α – possible combinations of the S, L,J, S_2 , L_2 , J_2 , S', L' and i $A_{tr}^{\alpha}(s)$ - transition Amplitude

 $A_{2b}^{\alpha}(i, S_2, L_2, J_2)$ – rescattering process in he final two-particle channel (e.g. production of Δ)

Fitting Procedure

The transition Amplitude is parameterized as follows

 $A_{tr}^{\alpha}(s) = \left(a_1^{\alpha} + a_3^{\alpha}\sqrt{s}\right)e^{ia_2^{\alpha}}$

This is a log-likelihood minimization on an event-by-event base

What we included to model the PK⁺Λ process:

N* Resonances in the PDG with measured decay into $K^+\Lambda$

Notation in PDG	Old notation	Mass [GeV/c ²]	Width [GeV/c ²]	Γ _{ΛΚ} /Γ _{Αll} %
N(1650) 1/2	N(1650)S ₁₁	1.655	0.150	3-11
N(1710) $\frac{\bar{1}}{2}^+$	N(1710)P ₁₁	1.710	0.200	5-25
N(1720) <u>3</u> +	N(1720)D ₁₃	1.720	0.250	1-15
N(1875) <u>3</u>	N(1875)D ₁₃	1.875	0.220	4 ± 2
N(1880) ¹ / ₂ +	N(1880)P ₁₁	1.870	0.235	2 ± 1
N(1895) <u>1</u>	N(1895)S ₁₁	1.895	0.090	18 ± 5
N(1900) $\frac{3}{2}^{+}$	N(1900)P ₁₃	1.900	0.250	0-10

And the production of $pK^+\Lambda$ via non resonant waves

Systematic

N* content

No.	Combination
0	N(1650), N(1710), N(1720)
1	N(1650), N(1710), N(1720), N(1900)
2	N(1650), N(1710), N(1720), N(1895)
3	N(1650), N(1710), N(1720), N(1880)
4	N(1650), N(1710), N(1720), N(1875)
5	N(1650), N(1710), N(1720), N(1900), N(1880)
6	N(1650), N(1710), N(1720), N(1900), N(1895)
7	N(1650), N(1710), N(1720), N(1900), N(1875)
8	N(1650), N(1710), N(1720), N(1895), N(1880)
•	

9 N(1650), N(1710), N(1720), N(1895), N(1875)
10 N(1650), N(1710), N(1720), N(1880), N(1875)

non-resonant content

- No. Combination
 - 0 no non-resonant waves
 - 1 $(pL)({}^{1}S_{0}) K$
 - 2 previous wave + $(pL)(^{3}S_{1}) K$
 - 3 previous waves + $(pL)(^{1}P_{1}) K$
 - 4 previous waves + $(pL)({}^{3}P_{0}) K$
 - 5 previous waves + $(pL)({}^{3}P_{1}) K$
 - 6 previous waves + $(pL)({}^{3}P_{2}) K$
 - 7 previous waves + $(pL)({}^{1}D_{2}) K$
 - 8 previous waves + $(pL)({}^{3}D_{1}) K$
 - 9 previous waves + (pL)($^{3}D_{2}$) K

No. of N* combina	ation	No. of non-res. waves	Log-likelih.
	0	7	-2415.74
	1	8	-2708.49
Best Solutions	2	8	-2524.59
	3	8	-2712.49
	4	4	-2671.05
	5	8	-2310.4
	6	9	-2754.37
	7	8	-2657.77
	8	8	-2734.97
	9	6	-2698.86
	10	4	-2642.58

Solution inside WALL acceptance

Figure 2.18: Two-particle masses for the **HA DES data set** (black points) shown with the **four best PWA solutions** (gray band), obtained by a ?t to the HADES and WALL data.

Figure 2.19: Two-particle masses for the **WALL data set** (black points) shown with the **four best PWA solutions** (gray band), obtained by a ?t to the HADES and WALL data.

PWA Results

- + Experimental Data
- Solution A
- Solution B
- Solution C
- Solution D
- Solution E

PWA Results

Experimental Data

Solution inside WALL acceptance

ppK⁻ Upper Limit

$p + p \rightarrow p + K^+ + \Lambda$ Total Cross Section

$$\sigma(\epsilon) = a \left(1 - \frac{s_0}{(\sqrt{s_0} + \epsilon)^2} \right)^b \left(\frac{s_0}{(\sqrt{s_0} + \epsilon)^2} \right)^c$$

S. Abd El-Samad et al. Phys.Lett B688 (2010) S. Abd El-Samad et al. Phys.Lett B632 (2007) M. Abdel-Bary et al., Eur.Phys.J A46(2010) S. Abd El-Samad et al., Eur.Phys.J A49(2013) K.Fuchs et al., Springer Verlag 1985

Upper Limit Cross Section

Γ (MeVc ⁻²)	Cross Section (μb)
20	7.6 \pm 1.2 ^{- 3.5} - 22.4 \pm 3.6 ^{- 10.7}
35	$6.3 \pm 1.7^{-0.6}$ - $9.5 \pm 2.6^{-0.9}$
50	$10.2 \pm 1.8^{-4.5}$ - $11.6 \pm 3.4^{-0.6}$
60	$11.2 \pm 1.9^{-5.0}$ - $33.8 \pm 5.2^{-16.9}$
80	11.4 ± 2.7 $^{-3.8}$ - 35.9 ± 5.7 $^{-17.4}$

High production cross section even though no peak is visible

Peak structure suppressed due to interference

Cross Check

Cross Check

Good consistency among the results. The solution is not biased by a possible signal in the excluded mass range

Result

$$pull = \sum_{i=1}^{N_b} \frac{(m_i - \lambda_i)}{\lambda_i}$$

 m_i are the number of measured events in the bin i λ_i number of expected events in the bin according to the model N_b is the number of bins

The best solution

Four Best PWA Solutions

Inside HADES acceptance

Name	N* combination
1/8	N(1650), N(1710), N(1720), N(1900)
3/8	N(1650), N(1710), N(1720), N(1880)
6/9	N(1650), N(1710), N(1720), N(1900), N(1895)
8/8	N(1650), N(1710), N(1720), N(1895), N(1880)

Test of the Null Hypothesis

Test of the Null Hypothesis

$$\chi_P^2 = \frac{(m - \lambda)^2}{\lambda}$$

$$p - value = \int_{\chi_{P,d}^2}^{\infty} P(\chi^2, Ndf) d\chi^2$$

 $\begin{array}{l} m_i \text{ measured events in bin i} \\ \lambda_i \text{ expected events in bin i} \\ \text{ according to the model} \end{array}$

2600

Test of the Null Hypothesis

Test of the Null Hypothesis

Test of the Null Hypothesis

 $\begin{array}{l} m_i \text{ measured events in bin i} \\ \lambda_i \text{ expected events in bin i} \\ \text{ according to the model} \end{array}$

HADES

us

Test of the Signal Hypothesis

Inclusion of a new State

Data Points Null Hypothesis Hypothesis with ppK-

Feature of a PWA

... Interferences

The minimum has to be found by the fit

Upper limit at CL_s 95%

These waves are included into the four best solutions of the PWA

Scanned masses: 2220 – 2370 MeV/c² (in steps of 10 MeV/c²) Scanned widths: 30 MeV, 50 MeV, and 70 MeV

Thanks to the HADES Collaboration

Jörn Adamczewski-Musch, Geydar Agakishiev, Claudia Behnke, Alexander Belyaev, Jia-Chii Berger-Chen, Alberto Blanco, Christoph Blume, Michael Böhmer, Pablo Cabanelas, Nuno Carolino, Sergey Chernenko, Jose Díaz, Adrian Dybczak, Eliane Epple, Laura Fabbietti, Oleg Fateev, Paulo Fonte, Jürgen Friese, Ingo Fröhlich, Tetyana Galatyuk, Juan A. Garzón, Roman Gernhäuser, Alejandro Gil, Marina Golubeva, Fedor Guber, Malgorzata Gumberidze, Szymon Harabasz, Klaus Heidel, Thorsten Heinz, Thierry Hennino, Romain Holzmann, Jochen Hutsch, Claudia Höhne, Alexander Ierusalimov, Alexander Ivashkin, Burkhard Kämpfer, Marcin Kajetanowicz, Tatiana Karavicheva, Vladimir Khomyakov, Ilse Koenig, Wolfgang Koenig, Burkhard W. Kolb, Vladimir Kolganov, Grzegorz Korcyl, Georgy Kornakov, Roland Kotte, Erik Krebs, Hubert Kuc, Wolfgang Kühn, Andrej Kugler, Alexei Kurepin, Alexei Kurilkin, Pavel Kurilkin, Vladimir Ladygin, Rafal Lalik, Kirill Lapidus, Alexander Lebedev, Ming Liu, Luís Lopes, Manuel Lorenz, Gennady Lykasov, Ludwig Maier, Alexander Malakhov, Alessio Mangiarotti, Jochen Markert, Volker Metag, Jan Michel, Christian Müntz, Rober Münzer, Lothar Naumann, Marek Palka, Vladimir Pechenov, Olga Pechenova, Americo Pereira, Jerzy Pietraszko, Witold Przygoda, Nicolay Rabin, Béatrice Ramstein, Andrei Reshetin, Laura Rehnisch, Philippe Rosier, Anar Rustamov, Alexander Sadovsky, Piotr Salabura, Timo Scheib, Alexander Schmah, Heidi Schuldes, Erwin Schwab, Johannes Siebenson, Vladimir Smolyankin, Manfred Sobiella, Yuri Sobolev, Stefano Spataro, Herbert Ströbele, Joachim Stroth, Christian Sturm, Khaled Teilab, Vladimir Tiflov, Pavel Tlusty, Michael Traxler, Alexander Troyan, Haralabos Tsertos, Evgeny Usenko, Taras Vasiliev, Vladimir Wagner, Christian Wendisch, Jörn Wüstenfeld, Yuri Zanevsky

References for the Calculations

- [AY02] Yoshinori Akaishi and Toshimitsu Yamazaki. Nuclear anti-K bound [IKS10] states in light nuclei. *Phys.Rev.*, C65:044005, 2002.
- [BGL12] N. Barnea, A. Gal, and E.Z. Liverts. Realistic calculations of KNN, KNNN, and KKNN quasibound states. Phys.Lett., B712:132–137, [IS07] 2012.
- [BO12a] M. Bayar and E. Oset. KNN Absorption within the Framework of the [IS Fixed Center Approximation to Faddeev equations. 2012.
- [BO12b] M. Bayar and E. Oset. Improved Fixed Center Approximation of the Faddeev equations for the $\bar{K}NN$ system with S=0. *Nucl.Phys.*, A883:57–68, 2012.
- [DHW08] Akinobu Dote, Tetsuo Hyodo, and Wolfram Weise. *K*⁻pp system with chiral SU(3) effective interaction. *Nucl.Phys.*, A804:197–206, 2008.
- [DHW09] Akinobu Dote, Tetsuo Hyodo, and Wolfram Weise. Variational calculation of the ppK⁻system based on chiral SU(3) dynamics. *Phys.Rev.*, C79:014003, 2009.
- [FIK⁺11] M. Faber, A.N. Ivanov, P. Kienle, J. Marton, and M. Pitschmann. Molecule model for kaonic nuclear cluster $\bar{K}NN$. Int.J.Mod.Phys., E20:1477–1490, 2011.

- Yoichi Ikeda, Hiroyuki Kamano, and Toru Sato. Energy dependence of \overline{KN} interactions and resonance pole of strange dibaryons. *Prog.Theor.Phys.*, 124:533–539, 2010.
- Y. Ikeda and T. Sato. Strange dibaryon resonance in the \overline{K} NN π YN system. *Phys.Rev.*, C76:035203, 2007.
- [IS09] Yoichi Ikeda and Toru Sato. On the resonance energy of the $\overline{K}NN \pi YN$ system. *Phys.Rev.*, C79:035201, 2009.
- [RS14] J Revai and N.V. Shevchenko. Faddeev calculations of the KNN system with chirally-motivated KN interaction. II. The K⁻ pp quasi-bound state. 2014.
- [SGM07] N.V. Shevchenko, A. Gal, and J Mares. Faddeev calculation of a K⁻pp quasi-bound state. *Phys.Rev.Lett.*, 98:082301, 2007.
- [SGMR07] N.V. Shevchenko, A. Gal, J Mares, and J Revai. $\overline{K}NN$ quasi-bound state and the $\overline{K}N$ interaction: Coupled-channel Faddeev calculations of the $\overline{K}NN-\pi\Sigma N$ system. *Phys.Rev.*, C76:044004, 2007.
- [WG09] S. Wycech and A. M. Green. Variational calculations for K-fewnucleon systems. *Phys. Rev. C*, 79:014001, 2009.
- [YA02] T. Yamazaki and Y. Akaishi. (K^-, π^-) production of nuclear \overline{K} bound states in proton-rich systems via Λ^* doorways. *Phys.Lett.*, B535:70–76, 2002.

N* resonances

Figure 6.10: a) $IM_{K^+\Lambda}$, b) $IM_{p\Lambda}$,c) MM_{K^+} and d) MM_{Λ} fitted with the sum of the four N^{*+}-resonances from table 6.2 and the simulation of a direct pK⁺ Λ production.

Master Thesis A. Solaguren-Beascoa Negre

Upper Limit

Dalitz Plots

HADES

Cross Section

Multi PWA

Combined Analysis of HADES and FOPI

s : - (Log Likely hood) of PWA

Energy dependent coefficient =0

Combined Analysis of HADES and FOPI

s : - (Log Likely hood) of PWA

Energy dependent coefficient fitted

Results HADES

Results HADES

Results WALL

Results WALL

Results FOPI

Results FOPI

4 PI – param_3_8_ene_dep

4 PI - param_3_8_ene_dep

Legendre Fits

Mean of all solutions

Contributions

PWA without Interference

Combined Analysis of HADES and FOPI

Results of 3_8_wo_int (not fitted)

Results of 3_8_wo_int (not fitted)

Results of 3_8_wo_int (100 iter)

Results of 3_8_wo_int (100 iter)

