Search for the Kaonic Cluster ppK-

Analysis of the reaction

$p+p \rightarrow p+K^{+}+\Lambda$
of HADES and FOPI

Outline

- Introduction
- Exclusive Data Samples
- Phase Space Model Comparison
- Coherent Approach with Partial Wave Analysis
- Upper Limit of ppK^{-}Contribution
- Summary

K-N Interaction

C. Sturm, Diss. TUD 2001

Coupling of \bar{K} to Resonances

$$
\begin{aligned}
& \Sigma+\pi \leftrightarrow \Lambda(1405) \leftrightarrow \bar{K}+N \\
& \Lambda+\pi \leftrightarrow \Sigma(1385) \leftrightarrow \bar{K}+N
\end{aligned}
$$

Lutz, Prog.Part.Nucl.Phys, 53 125-136

Resonances close to $\bar{K} \mathrm{~N}$ threshold
\rightarrow Chiral Perturbation cannot be applied

Coupled Channel Calculation

Self Consistent Bethe-Salpeter Equation

$$
T_{i j}(\sqrt{s})=V_{i j}(\sqrt{s})+V_{i l}(\sqrt{s}) G_{l}(\sqrt{s}) T_{l j}(\sqrt{s})
$$

T.Hyodo,W.Weise, Phys.Rev.C77 (2008)

Phenomenological Potential

Quasi bound state of K^{-}p via attractive I=0 interaction

J. Esmaili, Y.Akaishi, T. Yamazaki
J. Esmaili, Y.Akaishi, T. Yamazaki

Phys.Lett. B 686,23 Phys.Rev. C 83

Kaonic Cluster

Kaonic Cluster

Theoretical Predictions

	Chiral, energy dependent					Binding Energy (BE):
	var. [DHW09, DHW08]	Fad. [BO12b, BO12a]	var. [BGL12]	Fad. [IKS10]	Fad. [RS14]	
$B E$	17-23	26-35	16	9-16	32	10-100 MeV
Γ_{m}	40-70	50	41	34-46	49	
$\Gamma_{n m}$	4-12	30				Mesonic Decay ($\Gamma_{\text {m }}$)
	Non-chiral, static calculations					30-110 MeV
	var. [YA02, AY02]	Fad. [SGM07, SGMR07]	Fad. [IS07, IS09]	var. [WG09]	var. [FIK ${ }^{+11]}$	Non-Mesonic Decay (Γ_{nm})
BE	48	50-70	60-95	40-80	40	$4-30 \mathrm{MeV}$
Γ_{m}	61	90-110	45-80	40-85	64-86	
$\Gamma_{n m}$	12			~ 20	~21	

Experimental Results on ppK^{-}

Kaonic Cluster

Part of the $\Lambda(1405)$ Resonance

$$
\mathrm{p}+\mathrm{p} \longrightarrow \underbrace{\wedge(1405)+\mathrm{p}}_{\mathrm{ppK}^{-}+\mathrm{K}^{+}}+\mathrm{K}^{+}
$$

Kaonic Cluster

Part of the $\Lambda(1405)$ Resonance

$$
\mathrm{p}+\mathrm{p} \longrightarrow \underbrace{\substack{\hline 1405)+\mathrm{p}}}_{\mathrm{ppK}^{-}+\mathrm{K}^{+}}+\mathrm{K}^{+}
$$

Physical Background:

$$
\begin{aligned}
& \mathrm{p}+\mathrm{p} \longrightarrow \Lambda+\mathrm{p}+\mathrm{K}^{+} \\
& \mathrm{p}+\mathrm{p} \longrightarrow \mathrm{~N}^{*+}+\mathrm{p}
\end{aligned}
$$

Experimental Data

EXA 2014 - Vienna
Robert Münzer

The FOPI Experiment

SIS18 GSI Darmstadt

Beam Energy: 3.1 GeV

- Fixed-target Setup
- Full azimuthal coverage, 5° - 110° in polar angle
- Momentum resolution $\approx 7 \%-15 \%$
- Particle identification via $\mathrm{dE} / \mathrm{dx} \& \mathrm{ToF}$

Trigger Detector - $\mathrm{Si} \wedge \mathrm{ViO}$:
Λ - Enhancement: $\quad 14.1 \pm 7.9(\text { stat })_{-0.6}^{+4.3}$

Total Number of exclusive Events: 903

The HADES experiment

High Acceptance Di-electron Spectrometer GSI, Darmstadt

Beam Energy: 3.5 GeV

- Fixed-target Setup
- Full azimuthal coverage, $15^{\circ}-185^{\circ}$ in polar angle
- Momentum resolution $\approx 1 \%-5 \%$
- Particle identification via $\mathrm{dE} / \mathrm{dx}$ \& ToF

```
HADES Coll. (G. Agakishiev et al.),
Eur. Phys. J. A41 (2009)
```


The HADES Data Sample

HADES data

13,000 events of $\mathrm{pK}^{+} \Lambda$
Background from wrong PID $\approx 6 \%$
Background from $\mathrm{pK}^{+} \Sigma^{0} \approx 1 \%$

WALL data
8000 events of $\mathrm{pK}^{+} \Lambda$
Background from wrong PID $\approx 11.7 \%$
Background from $\mathrm{pK}^{+} \Sigma^{0} \approx 3 \%$

Total Data Set

Hades Data $\mathrm{E}_{\text {beam }}=3.5 \mathrm{GeV}$

Had. Wall Data $\mathrm{E}_{\text {beam }}=3.5 \mathrm{GeV}$
FOPI Data $\mathrm{E}_{\text {beam }}=3.1 \mathrm{GeV}$

R. Miunzer, PhD Thesis, TUM 2014
E. Epple, PhD Thesis, TUM 2014

Total Data Set

Hades Data $\mathrm{E}_{\text {beam }}=3.5 \mathrm{GeV}$

Had. Wall Data $E_{\text {beam }}=3.5 \mathrm{GeV}$
FOPI Data $\mathrm{E}_{\text {beam }}=3.1 \mathrm{GeV}$

> R. Mïnzer, PhD Thesis, TUM 2014
> E. Epple, PhD Thesis, TUM 2014
No Peak Visible No Signal?

Model Comparison

Phase Space Simulation Partial Wave Analysis

Phase Space Simulation

Phase Space Model

\section*{| $\frac{0}{00}$ |
| :---: |
| $\stackrel{\sum}{4}$ |
| \sum_{0}^{n} |}

Inside HADES acceptance

- Experimental Data
- $\mathrm{pp} \rightarrow \mathrm{p} \mathrm{K} \mathrm{K}^{+} \wedge$ Phase Space

Partial Wave Analysis

Bonn-Gatchina PWA Framework

A. Sarantsev et.al., Eur. Phys J A 252005

Cross-section Decomposition

$$
d \sigma=\frac{(2 \pi)^{4}|A|^{2}}{4|\boldsymbol{k}| \sqrt{s}} d \Phi_{3}\left(P, q_{1}, q_{2}, q_{3}\right), \quad P=k_{1}+k_{2} \mid
$$

A : reaction amplitude $A \propto A_{t r}{ }^{\alpha}(s) \quad$ (Transition amplitude of wave α)
$\mathrm{k}: 3$-momentum of the initial particle in the CM
$s-P^{2}:\left(k_{1}+k_{2}\right)^{2}$
$d \Phi_{3}\left(P, q_{1}, q_{2}, q_{3}\right)$: invariant three-particle phase space

Parameterization of the Transition

$$
A_{\mathrm{tr}}^{\alpha}(s)=\left(a_{1}^{\alpha}+a_{3}^{\alpha} \sqrt{s}\right) \exp \left(\mathrm{i} a_{2}^{\alpha}\right)
$$

a_{1}^{α} Constant amplitude
$a_{2}^{\alpha} \quad$ Phase
a_{3}^{α} Energy dependent amp.

Systematical Analysis

Systematical Scan over different p-p Initial Systems and different inclusion of N^{*} Resonances
Resonance in final State

Initial System

J^{P}	$S_{t o t}=0$	$S_{t o t}=1$
$\mathrm{~L}=0$	0^{+}	
$\mathrm{L}=1$		$0^{-}, 1^{-}, 2^{-}$
$\mathrm{L}=2$	2^{+}	
$\mathrm{L}=3$		$2^{-}, 3^{-}, 4^{-}$

Resonance	J^{P}	Mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	Width $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$
$N^{*}(1650)$	$\frac{1}{2}^{-}$	1.655	0.150
$N^{*}(1710)$	$\frac{1}{2}^{+}$	1.710	0.100
$N^{*}(1720)$	$\frac{3}{2}^{+}$	1.720	0.250
$N^{*}(1875)$	$\frac{3}{2}^{-}$	1.875	0.220
$N^{*}(1880)$	$\frac{1}{2}^{+}$	1.870	0.235
$N^{*}(1895)$	$\frac{1}{2}^{-}$	2.090	0.090
$N^{*}(1900)$	$\frac{3}{2}^{+}$	1.900	0.250

Four Best PWA Solutions

Inside HADES acceptance

Measured Data
PWA solutions

PWA Results

+ Experimental Data

Solution A
Solution B
Solution C
Solution D
Solution E

Four Best PWA Solutions

Contribution of Production Channels

EXA 2014 - Vienna
Robert Münzer

PWA Results - Relative Contribution

Sol.	X^{2} / ndf	Direct pK ${ }^{+} \bigwedge$	$\begin{aligned} & N^{*+} \\ & (1650) \end{aligned}$	$\begin{aligned} & N^{*+} \\ & (1710) \end{aligned}$	$\begin{aligned} & N^{*+} \\ & (1720) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1875) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1880) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1895) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1900) \end{aligned}$
A	1.09	0%	11.3 \%	52.4 \%	11.8 \%	6.3 \%	10.9 \%	0 \%	7.3 \%
B	1.09	16.6 \%	9.4 \%	42.3 \%	14.1 \%	0 \%	9.7 \%	0 \%	7.9 \%
C	1.10	0 \%	11.1 \%	49.5 \%	7.5 \%	0 \%	14.1 \%	9.3 \%	8.5 \%
D	1.12	13.9 \%	6.8 \%	43.8 \%	11.9 \%	5.3 \%	9.4 \%	0 \%	8.9 \%
E	1.15	21.1 \%	8.6 \%	41.9 \%	17.6 \%	0 \%	0 \%	0 \%	10.8 \%

EXA 2014 - Vienna Robert Münzer

PWA Results - Relative Contribution

Sol.	$\mathrm{X}^{2} / \mathrm{ndf}$	Direct pK+^	(1650)	$\begin{aligned} & N^{*+} \\ & (1710) \end{aligned}$	$\begin{aligned} & N^{*+} \\ & (1720) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1875) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1880) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1895) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1900) \end{aligned}$
A	1.09	0 \%	11.3 \%	52.4 \%	11.8 \%	6.3 \%	10.9 \%	0 \%	7.3 \%
B	1.09	16.6 \%	9.4 \%	42.3 \%	14.1 \%	0 \%	9.7 \%	0 \%	7.9 \%
C	1.10	0 \%	11.1 \%	49.5 \%	7.5 \%	0 \%	14.1 \%	9.3 \%	8.5 \%
D	1.12	13.9 \%	6.8 \%	43.8 \%	11.9 \%	5.3 \%	9.4 \%	0 \%	8.9 \%
E	1.15	21.1 \%	8.6 \%	41.9 \%	17.6 \%	0 \%	0 \%	0 \%	10.8 \%

EXA 2014 - Vienna Robert Münzer

PWA Results - Relative Contribution

EXA 2014 - Vienna Robert Münzer

PWA Results - Relative Contribution

Sol.	X^{2} / ndf	Direct pK ${ }^{+} \bigwedge$	$\begin{aligned} & N^{*+} \\ & (1650) \end{aligned}$	$\begin{aligned} & N^{*+} \\ & (1710) \end{aligned}$	$\begin{aligned} & N^{*+} \\ & (1720) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1875) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1880) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1895) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1900) \end{aligned}$
A	1.09	0%	11.3 \%	52.4 \%	11.8 \%	6.3 \%	10.9 \%	0 \%	7.3 \%
B	1.09	16.6 \%	9.4 \%	42.3 \%	14.1 \%	0 \%	9.7 \%	0 \%	7.9 \%
C	1.10	0 \%	11.1 \%	49.5 \%	7.5 \%	0 \%	14.1 \%	9.3 \%	8.5 \%
D	1.12	13.9 \%	6.8 \%	43.8 \%	11.9 \%	5.3 \%	9.4 \%	0 \%	8.9 \%
E	1.15	21.1 \%	8.6 \%	41.9 \%	17.6 \%	0 \%	0 \%	0 \%	10.8 \%

EXA 2014 - Vienna Robert Münzer

PWA Results - Relative Contribution

Sol.	$\mathrm{X}^{2} / \mathrm{ndf}$	Direct $\mathrm{pK}^{+} \wedge$	$\begin{aligned} & N^{*+} \\ & (1650) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1710) \end{aligned}$	$\begin{aligned} & N^{*+} \\ & (1720) \end{aligned}$	$\begin{aligned} & N^{*+} \\ & (1875) \end{aligned}$	$\begin{aligned} & N^{*+} \\ & (1880) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1895) \end{aligned}$	$\begin{aligned} & \mathrm{N}^{*+} \\ & (1900) \end{aligned}$
A	1.09	0 \%	11.3 \%	52.4 \%	11.8 \%	6.3 \%	10.9 \%	0 \%	7.3 \%
B	1.09	16.6 \%	9.4 \%	42.3 \%	14.1 \%	0 \%	9.7 \%	0 \%	7.9 \%
C	1.10	0 \%	11.1 \%	49.5 \%	7.5 \%	0 \%	14.1 \%	9.3 \%	8.5 \%
D	1.12	13.9 \%	6.8 \%	43.8 \%	11.9 \%	5.3 \%	9.4 \%	0 \%	8.9 \%
E	1.15	21.1 \%	8.6\%	41.9 \%	17.6 \%	0%	0 \%	0%	10.8 \%

Experimental Data can be described by known sources

Upper Limit of ppK- Contribution

ppK- Upper Limit Determination

-> ppK ${ }^{-}$Waves include in BG-PWA
-> Mass and Width fixed
-> Background for 5 best solution without ppK-
-> Stepwise increase of Amplitude $\left(a_{1}\right)$
-> Phase Parameter free $\left(\mathrm{a}_{2}\right)$ => Optimal amount of Interference

Exclusion limit:
Confidence Level (95\%) (CL ${ }_{s}$)

$\mathrm{M}\left(\mathrm{ppK}^{-}\right)=2.305 \mathrm{GeVc}^{-2} \Gamma\left(\mathrm{ppK}^{-}\right)=20 \mathrm{MeVc}^{-2}$

ppK- Upper Limit Determination

$p+p->p+K^{+}+\Lambda$
Total Cross Section

$$
\sigma_{\mathrm{p} K^{+} \Lambda}=41.0 \pm 12.8 \mu \mathrm{~b}
$$

Interpolated from literature

Upper Limit Cross Section

Г $\left(\mathrm{MeVc}^{-2}\right)$	Cross Section $(\mu \mathrm{b})$
20	$7.6 \pm 1.2^{-3.5}-22.4 \pm 3^{-6.6^{-10.7}}$
35	$6.3 \pm 1^{-0.6}-9.5 \pm 2.6^{-0.9}$
50	$10.2 \pm 1.8^{-4.5}-11.6 \pm 3.4^{-0.6}$
60	$11.2 \pm 1.9^{-5.0}-33.8 \pm 5^{-16.9}-16.9$
80	$11.4 \pm 2.7^{-3.8}-35.9 \pm 5.7^{-17.4}$

Upper Limit

Measured total cross-section: $\quad \sigma_{p K+\Lambda}=38.12 \pm 0.43_{-2.83}^{+3.55} \pm 2.67$ ($p+p$-error) -2.9 (background) $\mu \mathrm{b}$

Upper limit of ppK ${ }^{-}$Cross Section:

$\Gamma\left(\mathrm{MeVc}^{-2}\right)$	Cross Section $(\mu \mathrm{b})$
0^{+}	$1.9-3.9$
1^{-}	$2.1-4.2$
2^{+}	$0.7-2.1$

Production Cross Section \wedge (1405)

$$
9.2 \pm 0.9^{ \pm} 0.7^{+3.3}{ }_{-1.0} \mu \mathrm{~b}
$$

HADES coll. (G. Agakishiev et al.) Phys. Rev. C 87, 025201 (2013) \square LIVU

HADES

Summary

- 13000 (HADES) $+8000($ WALL $)+903$ (FOPI) exclusive events $p+p->p+K^{+}+\Lambda$ reconstructed
- Experimental data cannot be reproduced by Phase Space
- Good explanation by Bonn-Gatchina PWA framework:

Strong contribution of N^{*+} resonances
No Additional Signal needed

- Determination of upper limit of the kaonic cluster between 7.4 and $35.9 \mu \mathrm{~b}$ (FOPI) and $0.7-4.2 \mu \mathrm{~b}$ (HADES).
- Important effect of Interference $=>$ No Peak in final spectrum

Future Perspectives

- Combined analysis of results from different experiments at different energies and polarization observables => Application to the DFG accepted

experiment	$\sqrt{s}(\mathrm{GeV})$	$\epsilon_{\mathrm{p} K^{+}}$	$\epsilon_{\mathrm{pp} K^{-}}$	statistics	polar.
COSY-TOF [AS ${ }^{+} 06 \mathrm{a}$]	2.63	84.87	-231.40	791	N
COSY-TOF [$\mathrm{AS}^{+} 06 \mathrm{a}$]	2.66	114.91	-201.35	1037	N
COSY-TOF [Rit13]	2.67	121.56	-194.71	160000	?
COSY-TOF [AS $\left.{ }^{+} 06 \mathrm{a}\right]$	2.72	171.05	-145.22	4323	N
DISTO [M^{+}10, Mag01]	2.75	200.44	-115.83	121000	Y
COSY-TOF [M.R11]	2.75	203.69	-112.58	43662	Y
COSY-TOF [$\left.\mathrm{AES}^{+} 10\right]$	2.75	203.69	-112.58	7228	N
COSY-TOF [AES $\left.{ }^{+} 10\right]$	2.75	203.69	-112.58	15372	N
COSY-TOF [$\mathrm{AB}^{+10]}$	2.79	238.95	-77.32	89684	N
COSY-TOF [$\left.\mathrm{AESBB}^{+} 13\right]$	2.79	245.70	-70.57	30000	N
COSY-TOF [$\left.\mathrm{AB}^{+} 10\right]$	2.83	284.06	-32.21	3322	N
COSY-TOF [AES $\left.{ }^{+} 10\right]$	2.83	284.06	-32.21	5791	N
COSY-TOF [AES $\left.{ }^{+} 10\right]$	2.87	318.86	2.60	6263	N
DISTO [$\left.\mathrm{M}^{+} 10, \mathrm{Mag} 01\right]$	2.87	318.86	2.60	304000	Y
DISTO [$\left.\mathrm{M}^{+} 10, \mathrm{Mag} 01, \mathrm{~B}^{+} 99\right]$	2.98	430.48	114.21	424000	Y
FOPI	3.06	508.97	192.70	903	N
HADES	3.18	629.33	313.06	20000	N

AES ${ }^{+10}$: S. Abd El-Samad et al. Phys.Lett B688 (2010) AB+10: M. Abdel-Bary et al., Eur.Phys.J A46(2010) AESBB'13: S. Abd El-Samad et al., Eur.Phys.J A49 (2013) Rit13: J.Ritmann, private cormunication (2013)

ASt06a : S. Abd El-Samad et al. Phys.Lett B632 (2006) M ${ }^{+10}$: M. Maggiora et al. Nucl. Phys. A385 (2010) Mag01: M. Maggiora Nucl. Phys. A691 (2001) B+99: F. Balestra et al., Phys.Rev.Lett 83 (1999) Epp14: E.Epple, Diss. TUM 2014

Outlook - Combined Analysis

EXA 2014 - Vienna Robert Münzer

Thank You

HADES Collaboration
FOPI Collaboration

Clus

EXA 2014 - Vienna Robert Münzer

Backup

EXA 2014 - Vienna
Robert Münzer

The Smallest Cluster

$$
I_{\mathrm{NN}}=1
$$

Property	Value
charge	+1
strangeness	-1
participants	$p p K^{-}, p n \bar{K}^{0}$
ρ	0^{-}

Chiral, energy dependent

	var. [DHW09, DHW08]	Fad. [BO12b, BO12a]	var. [BGL12]	Fad. [IKS10]	Fad. [RS14]
$B E$	$17-23$	$26-35$	16	$9-16$	32
Γ_{m}	$40-70$	50	41	$34-46$	49
$\Gamma_{n m}$	$4-12$	30			

Non-chiral, static calculations

	var. [YA02, AY02]	Fad. [SGM07, SGMR07]	Fad. [IS07, IS09]	var. [WG09]	var. [FIK ${ }^{+}$11]
$B E$	48	$50-70$	$60-95$	$40-80$	40
Γ_{m}	61	$90-110$	$45-80$	$40-85$	$64-86$
$\Gamma_{n m}$	12			~ 20	~ 21

Binding Energy (BE):
10-100 MeV
Mesonic Decay (Γ_{m})
$30-110 \mathrm{MeV}$
Non-Mesonic Decay (Γ_{nm}) 4-30 MeV

Trigger Detector - SiNViO

Silicon Λ-Vertexing and Identification Online

Trigger conditions:
LVL1: Multiplicty(ToF) > 1
LVL2 : LVL1 + SiAViO

$$
\wedge \text { - Enhancement: } \quad 14.1 \pm 7.9(\text { stat })_{-0.6}^{+4.3}
$$

$$
\text { R. Münzer et. al. NIM A } 745 \text { (2014) 38-49 }
$$

Reconstruction of exclusive Reactions

$$
\mathrm{p}+\mathrm{p} \rightarrow \mathrm{p}+\mathrm{K}^{+}+\Lambda
$$

Inclusive Reconstruction

(a)

(b)

	Before Refit $[\mathrm{cm}]$	After Refit $[\mathrm{cm}]$
σ_{x}	3.84	0.09
σ_{y}	2.98	0.04
σ_{z}	5.50	0.31

Exclusive Data Sample

Primary K ${ }^{+}$Selection

Kaon Candidates in RPC and CDC

Exclusive Data Sample

Primary K^{+}Selection

Λ Candidates in all sub detector Combinations

$$
\Lambda->p+\pi^{-}
$$

Exclusive Reconstruction

Primary K^{+}Selection

Exclusive Reconstruction

$$
\begin{gathered}
p+p \xrightarrow{3.1 \mathrm{GeV}} \mathrm{~L}^{\Lambda}+p+K^{+} \\
\text {Primary } \mathrm{K}^{+} \text {Selection } \\
\begin{array}{c}
\text { Exclusive Selection } \\
\text { by Kinematical Refit }
\end{array} \\
\begin{array}{c}
\text { Secondary } \mathrm{K}^{+} \text {Selection } \\
\text { Sideband Analysis }
\end{array}
\end{gathered}
$$

Exclusive Data Sample

Kinematical Refit

Variation of Track parameters with error

$$
\chi^{2}=\left(\vec{\alpha}-\vec{\alpha}_{0}\right)^{T} V_{\vec{\alpha}_{0}}^{-1}\left(\vec{\alpha}-\vec{\alpha}_{0}\right)
$$

$$
\text { pvalue }=\int_{\chi_{\text {fit }}^{2}}^{\infty} f_{\nu}\left(\chi^{2}\right) d \chi^{2} .
$$

Different Kaon selection

Backup

Sideband Analysis

HADESS

Λ / Σ Separation

Particle	Mass	Fit μ	Fit σ	Fit Amplitude
Λ	1115.8	1.1171	0.07	136.35
Σ^{0}	1192.1	1.185	0.06	11.277
higher Resonance contribution		1.32	0.05	28.8

HADES

value	minimal value $[\mathrm{cm}]$	maximal value $[\mathrm{cm}]$
primvertex $_{x}$	-1.0	1.0
primvertex $_{y}$	-1.0	1.0
primvertex $_{z}$	-2.0	2.0
dr	3.0	∞

EXA 2014 - Vienna Robert Münzer

Exclusive Data Sample

Sideband Background

Background Subtracted

HADES

Exclusive Data Sample

Momentum Region	Signal Events	Background Events
$0.0-0.5 \mathrm{GeV} / \mathrm{c}$	177	146
$0.5-0.6 \mathrm{GeV} / \mathrm{c}$	150	136
$0.6-\mathrm{GeV} / \mathrm{c}$	577	577
Total	903	859

Angular Distributions

Center-of-mass angle

Gottfried-Jackson Angle

Simulation Packages

Phase Space Simulation

Transport Modell - UrQMD
Incoherent Cocktail
$p+p \rightarrow p+K^{+}+\Lambda$

$$
p+p \rightarrow p+N^{+*}\left(\rightarrow K^{+}+\Lambda\right)
$$

Angular Distribution $\begin{aligned} & \text { Froblich et al. } \\ & \text { Pos Scarzoon (2007) }\end{aligned}$

M. Abdel-Bary et al.,

Eur. Phys.J A46 (2010)

E. Epple,

Diss. TUM (2014)

Quantum Molecular Dynamics

Description of all
particle correlations

Production of $\mathrm{p} \mathrm{K}^{+} \Lambda$ via Resonances (N^{+*})

The UrgMD Model, http://urqmal.org/ 2013

Phase Space Simulation

+ Experimental Data
- Incoherent Cocktail
$p+p \rightarrow p+K^{+}+\Lambda$
$-p+p \rightarrow p+N^{*+}(1650)$
$-p+p \rightarrow p+N^{*+}(1700)$
$=p+p \rightarrow p+N^{*+}(1900)$
$p+p \rightarrow p+N^{*+}(2190)$

Phase Space Simulation

$\cos \left(\theta_{C M S}\right)\left(K^{+}\right)$

+ Experimental Data
- Incoherent Cocktail
$-p+p \rightarrow p+K^{+}+\Lambda$
$-p+p \rightarrow p+N^{*+}(1650)$
$-p+p \rightarrow p+N^{*+}(1700)$
$-p+p \rightarrow p+N^{*+}(1900)$
$-p+p \rightarrow p+N^{*+}(2190)$

Phase Space Simulation

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(1)

+ Experimental Data
pp -> p K ${ }^{+} \wedge$ Phase Space Simulation

Phase Space Simulation

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(1)

+ Experimental Data
pp -> p K ${ }^{+} \wedge$ Phase Space Simulation

Phase Space Simulation

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(1)

+ Experimental Data
pp -> p N*+(1650)
Phase Space Simulation

Phase Space Simulation

+ Experimental Data
pp -> p N*+(1700)
Phase Space Simulation

Phase Space Simulation

+ Experimental Data
pp -> p N*+(1900)
Phase Space Simulation

Phase Space Simulation

UrQMD Simulation

+ Experimental Data
- UrQMD Simulations

EXA 2014 - Vienna Robert Münzer

UrQMD Simulation

+ Experimental Data
- UrQMD Simulations

$$
\begin{aligned}
& A=\quad N^{*}(1875) \text { waves enabled (1) / disabled (0) } \\
& B=\quad N^{*}(1880) \text { waves enabled (1) / disabled (0) } \\
& C=N^{*}(1895) \text { waves enabled (1)/disabled (0) } \\
& D=\quad N^{*}(1900) \text { waves enabled (1)/disabled (0) } \\
& E=\mathrm{p} K^{+} \Lambda \text { non resonant waves enabled (1)/disabled (0) } \\
& F=5 \quad \text { Initial proton states: }{ }^{1} S_{0},{ }^{1} D_{2},{ }^{3}, P_{0},{ }^{3} P_{1},{ }^{3} P_{2},{ }^{3} F_{3} \\
& =4 \quad \text { Initial proton states. }{ }^{1} S_{0},{ }^{1} D_{2},{ }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2} \\
& =3 \quad \text { Initial proton states: }{ }^{1} S_{0},{ }^{1} D_{2},{ }^{3} P_{0},{ }^{3} P_{1} \\
& =2 \quad \text { Initial proton states: }{ }^{1} S_{0},{ }^{1} D_{2},{ }^{3} P_{0} \\
& =1 \quad \text { Initial proton states: }{ }^{1} S_{0},{ }^{1} D_{2} \\
& =0 \quad \text { Initial proton states: }{ }^{1} S_{0}
\end{aligned}
$$

(a)

(c)

(b)

(d)

PWA Results in 4π

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(1)

EXA 2014 - Vienna Robert Münzer

ppK-Upper Limit Determination

Exclusion limit:

$$
\begin{array}{r}
p_{\mu}>\alpha\left(1-p_{0}\right) \\
p_{\mu}=\int_{\chi_{\text {eignal }}^{2}}^{\infty} f_{\nu}\left(\chi^{2}\right) d \chi^{2}
\end{array}
$$

Scan of different mass and width $\mathrm{M}\left(\mathrm{ppK}^{-}\right)=2.205-2.305 \mathrm{GeV} / \mathrm{c}^{2}$ $\Gamma\left(\mathrm{ppK}^{-}\right)=20-80 \mathrm{MeV} / \mathrm{c}^{2}$
And 5 best solution of PWA w/o ppK^{-}

Background Solution: 000113

Bonn-Gatchina PWA

Cross Section for the production of three particles out of a collision of two particle

$$
d \sigma=\frac{(2 \pi)^{4}|A|^{2}}{4|\boldsymbol{k}| \sqrt{s}} d \Phi_{3}\left(P, q_{1}, q_{2}, q_{3}\right), \quad P=k_{1}+k_{2}
$$

A - reaction amplitude
k-3-momentum of the initial particle in the CM
$s-P^{2}=\left(k_{1}+k_{2}\right)^{2}$
$d \Phi_{3}\left(P, q_{1}, q_{2}, q_{3}\right)$ - invariant three-particles phase space
http://pwa.hiskp.uni-bonn.de/ A.V. Anisovich, V.V. Anisovich, E. Klempt, V.A. Nikonov and A.V. Sarantsev Eur. Phys. J. A 34, 129152 (2007)

The decomposition of the scattering amplitude into partial waves can be written as follows:

$$
\begin{equation*}
A=\sum A_{t r}^{\alpha}(s) Q_{\mu_{1} \ldots \mu_{J}}^{i n}(S L J) A_{2 b}\left(i, S_{2} L_{2} J_{2}\right)\left(s_{i}\right) \times Q_{\mu_{1} \ldots \mu_{J}}^{f i n}\left(i, S_{2} L_{2} J_{2} S^{\prime} L^{\prime} J\right) . \tag{2}
\end{equation*}
$$

S, L, J - spin, orbital mom. and total angular momentum of the pp system
S_{2}, L_{2}, J_{2} - spin, orbital mom. and total angular momentum of the two particle system in fin. state
$S^{\prime}, L^{\prime} \quad$ - spin, orbital mom. between the two particle system and the third particle with four mom. q_{i} multiindex α-possible combinations of the $S, L, J, S_{2}, L_{2}, J_{2}, S^{\prime}, L^{\prime}$ and i
$A_{t r}{ }^{\alpha}$ (s) - transition Amplitude
$A_{2 b}{ }^{\alpha}\left(i, S_{2}, L_{2}, J_{2}\right)$ - rescattering process in he final two-particle channel (e.g. production of Δ)

Fitting Procedure

The transition Amplitude is parameterized as follows

$$
A_{t r}^{\alpha}(s)=\left(a_{1}^{\alpha}+a_{3}^{\alpha} \sqrt{s}\right) e^{i a_{2}^{\alpha}}
$$

This is a log-likelihood minimization on an event-by-event base

What we included to model the $\mathrm{PK}^{+} \Lambda$ process:

N^{*} Resonances in the PDG with measured decay into $\mathrm{K}^{+} \Lambda$

Notation in PDG	Old notation	Mass [GeV/c ${ }^{2}$]	Width [$\mathrm{GeV} / \mathrm{c}^{2}$]	$\Gamma_{\wedge K} / \Gamma_{\text {All }} \%$
$\mathrm{N}(1650) \frac{1}{2}^{-}$	$N(1650) S_{11}$	1.655	0.150	3-11
$N(1710) \frac{1}{2}^{+}$	$\mathrm{N}(1710) \mathrm{P}_{11}$	1.710	0.200	5-25
$N(1720) \frac{3}{2}^{+}$	$N(1720) D_{13}$	1.720	0.250	1-15
$\mathrm{N}(1875){ }^{\frac{3}{2}}$	$N(1875) D_{13}$	1.875	0.220	4 ± 2
$\mathrm{N}(1880) \frac{1}{2}^{+}$	$N(1880) \mathrm{P}_{11}$	1.870	0.235	2 ± 1
$N(1895) \frac{1}{2}^{-}$	$N(1895) \mathrm{S}_{11}$	1.895	0.090	18 ± 5
$N(1900) \frac{3}{2}^{+}$	$N(1900) \mathrm{P}_{13}$	1.900	0.250	0-10

[^0]HADIES

Systematic

N^{*} content	
No.	Combination
0	$N(1650), N(1710), N(1720)$
1	$N(1650), N(1710), N(1720), N(1900)$
2	$N(1650), N(1710), N(1720), N(1895)$
3	$N(1650), N(1710), N(1720), N(1880)$
4	$N(1650), N(1710), N(1720), N(1875)$
5	$N(1650), N(1710), N(1720), N(1900), N(1880)$
6	$N(1650), N(1710), N(1720), N(1900), N(1895)$
7	$N(1650), N(1710), N(1720), N(1900), N(1875)$
8	$N(1650), N(1710), N(1720), N(1895), N(1880)$
9	$N(1650), N(1710), N(1720), N(1895), N(1875)$
10	$N(1650), N(1710), N(1720), N(1880), N(1875)$

non-resonant content

No.	Combination
0	no non-resonant waves
1	$(p L)\left({ }^{1} S_{0}\right)-K$
2	previous wave $+(p L)\left({ }^{3} S_{1}\right)-K$
3	previous waves $+(p L)\left({ }^{1} P_{1}\right)-K$
4	previous waves $+(p L)\left({ }^{3} P_{0}\right)-K$
5	previous waves $+(p L)\left({ }^{3} P_{1}\right)-K$
6	previous waves $+(p L)\left({ }^{3} P_{2}\right)-K$
7	previous waves $+(p L)\left({ }^{1} D_{2}\right)-K$
8	previous waves $+(p L)\left({ }^{3} D_{1}\right)-K$
9	previous waves $+(p L)\left({ }^{3} D_{2}\right)-K$

No. of ${ }^{*}$ combination		No. of non-res. waves	Log-likelih.
Best Solutions	0	7	-2415.74
	1	8	-2708.49
	2	8	-2524.59
	3	8	-2712.49
	4	4	-2671.05
	5	8	-2310.4
	6	9	-2754.37
	7	8	-2657.77
	8	8	-2734.97
	9	6	-2698.86
	10	4	-2642.58

Solution inside WALL acceptance

Figure 2.18: Two-particle masses for the HADES data set (black points) shown with the four be st PW A solutions (gray band), obtained by a ?t to the HADE S and WALL data.

Figure 2.19: Two-particle masses for the W ALL data set (black points) shown with the four be st PW A solutions (gray band), obtained by a ?t to the HADES and WALL data.

ता
LMU
HADES

PWA Results

+ Experimental Data
- Solution A

Solution B

- Solution C
- Solution D
- Solution E

EXA 2014 - Vienna Robert Münzer

PWA Results

+ Experimental Data

Solution A
Solution B
Solution C
Solution D
Solution E

Solution inside WALL acceptance

ppK- Upper Limit

$p+p->p+K^{+}+\Lambda$
Total Cross Section

Upper Limit Cross Section

$\Gamma\left(\mathrm{MeVc}^{-2}\right)$	Cross Section $(\mu \mathrm{b})$
20	$7.6 \pm 1.2^{-3.5}-22.4 \pm 3.6^{-10.7}$
35	$6.3 \pm 1.7^{-0.6}-9.5 \pm 2.6^{-0.9}$
50	$10.2 \pm 1.8^{-4.5}-11.6 \pm 3.4^{-0.6}$
60	$11.2 \pm 1.9^{-5.0}-33.8 \pm 5^{-16.9}$
80	$11.4 \pm 2.7^{-3.8}-35.9 \pm 5.7^{-17.4}$

High production cross section even though no peak is visible

Peak structure suppressed due to interference
S. Abd El-Samad et al. Phys.Lett B688 (2010)
S. Abd El-Samad et al. Phys.Lett B632 (2007)
M. Abdel-Bary et al., Eur.Phys.J A46 (2010)
S. Abd El-Samad et al., Eur.Phys.J A49 (2013)
K.Fuchs et al., Springer Verlag 1985

Cross Check

EXA 2014 - Vienna Robert Münzer

Cross Check

Good consistency among the results.
The solution is not biased by a possible signal in the excluded mass range

Result

$$
\text { pull }=\sum_{i=1}^{N_{b}} \frac{\left(m_{i}-\lambda_{i}\right)}{\lambda_{i}}
$$

m_{i} are the number of measured events in the bin i
λ_{i} number of expected events in the bin according to the model N_{b} is the number of bins

The best solution

included resonances:

$\mathrm{N}(1650), \mathrm{N}(1710), \mathrm{N}(1720), \mathrm{N}(1900), \mathrm{N}(1895)$
$(p L)\left({ }^{1} S_{0}\right)-K(p L)\left({ }^{3} S_{1}\right)-K(p L)\left({ }^{1} P_{1}\right)-K$
$(p L)\left({ }^{3} P_{0}\right)-K \quad(p L)\left({ }^{3} P_{2}\right)-K(p L)\left({ }^{3} P_{1}\right)-K$
$(p L)\left({ }^{3} D_{1}\right)-K(p L)\left({ }^{1} D_{2}\right)-K(p L)\left({ }^{3} D_{2}\right)-K$

Four Best PWA Solutions

Inside HADES acceptance

Measured data
PWA solutions

Name	N^{*} combination
$1 / 8$	$N(1650), N(1710), N(1720), N(1900)$
$3 / 8$	$N(1650), N(1710), N(1720), N(1880)$
$6 / 9$	$N(1650), N(1710), N(1720), N(1900), N(1895)$
$8 / 8$	$N(1650), N(1710), N(1720), N(1895), N(1880)$

Test of the Null Hypothesis

EXA 2014 - Vienna

Test of the Null Hypothesis

$\chi_{P}^{2}=\frac{(m-\lambda)^{2}}{\lambda}$
$p-$ value $=\int_{\chi_{P, d}^{2}}^{\infty} P\left(\chi^{2}, N d f\right) d \chi^{2}$

m_{i} measured events in bin i
λ_{i} expected events in bin i according to the model

Test of the Null Hypothesis

HADES

Test of the Null Hypothesis

Test of the Null Hypothesis

$$
\chi_{P}^{2}=\frac{(m-\lambda)^{2}}{\lambda}
$$

$$
p-\text { value }=\int_{\chi_{P, d}^{2}}^{\infty} P\left(\chi^{2}, N d f\right) d \chi^{2}
$$

m_{i} measured events in bin i λ_{i} expected events in bin i according to the model

$$
\chi_{P}^{2}=\frac{(m-\lambda)^{2}}{\lambda} \square \chi_{P}^{2}=\sum_{i=1}^{N_{b}} \frac{\left(m_{i}-\lambda_{i}\right)^{2}}{\lambda_{i}}
$$

Combined result

EXA 2014 - Vienna Robert Münzer

Test of the Signal Hypothesis

Inclusion of a new State

Feature of a PWA

... Interferences

The minimum has to be found
by the fit

Upper limit at $C L_{s} 95 \%$

These waves are included into the four best solutions of the PWA

Scanned masses:
$2220-2370 \mathrm{MeV} / \mathrm{c}^{2}$ (in steps of $10 \mathrm{MeV} / \mathrm{c}^{2}$)
Scanned widths:
30 MeV , 50 MeV , and 70 MeV

Thanks to the HADES Collaboration

Jörn Adamczewski-Musch, Geydar Agakishiev, Claudia Behnke, Alexander Belyaev, Jia-Chii Berger-Chen, Alberto Blanco, Christoph Blume, Michael Böhmer, Pablo Cabanelas, Nuno Carolino, Sergey Chernenko, Jose Díaz, Adrian Dybczak, Eliane Epple, Laura Fabbietti, Oleg Fateev, Paulo Fonte, Jürgen Friese, Ingo Fröhlich, Tetyana Galatyuk, Juan A. Garzón, Roman Gernhäuser, Alejandro Gil, Marina Golubeva, Fedor Guber, Malgorzata Gumberidze, Szymon Harabasz, Klaus Heidel, Thorsten Heinz, Thierry Hennino, Romain Holzmann, Jochen Hutsch, Claudia Höhne, Alexander Ierusalimov, Alexander Ivashkin, Burkhard Kämpfer, Marcin Kajetanowicz, Tatiana Karavicheva, Vladimir Khomyakov, Ilse Koenig, Wolfgang Koenig, Burkhard W. Kolb, Vladimir Kolganov, Grzegorz Korcyl, Georgy Kornakov, Roland Kotte, Erik Krebs, Hubert Kuc, Wolfgang Kühn, Andrej Kugler, Alexei Kurepin, Alexei Kurilkin, Pavel Kurilkin, Vladimir Ladygin, Rafal Lalik, Kirill Lapidus, Alexander Lebedev, Ming Liu, Luís Lopes, Manuel Lorenz, Gennady Lykasov, Ludwig Maier, Alexander Malakhov, Alessio Mangiarotti, Jochen Markert, Volker Metag, Jan Michel, Christian Müntz, Rober Münzer, Lothar Naumann, Marek Palka, Vladimir Pechenov, Olga Pechenova, Americo Pereira, Jerzy Pietraszko, Witold Przygoda, Nicolay Rabin, Béatrice Ramstein, Andrei Reshetin, Laura Rehnisch, Philippe Rosier, Anar Rustamov, Alexander Sadovsky, Piotr Salabura, Timo Scheib, Alexander Schmah, Heidi Schuldes, Erwin Schwab, Johannes Siebenson, Vladimir Smolyankin, Manfred Sobiella, Yuri Sobolev, Stefano Spataro, Herbert Ströbele, Joachim Stroth, Christian Sturm, Khaled Teilab, Vladimir Tiflov, Pavel Tlusty, Michael Traxler, Alexander Troyan, Haralabos Tsertos, Evgeny Usenko, Taras Vasiliev, Vladimir Wagner, Christian Wendisch, Jörn Wüstenfeld, Yuri Zanevsky

References for the Calculations

[AYO2]

Yoshinori Akaishi and Toshimitsu Yamazaki. Nuclear anti-K bound states in light nuclei. Phys.Rev., C65:044005, 2002.
[BGL12] N. Barnea, A. Gal, and E.Z. Liverts. Realistic calculations of $\bar{K} N N$, $\bar{K} N N N$, and $\bar{K} \bar{K} N N$ quasibound states. Phys.Lett., B712:132-137, 2012.
[BO12a] M. Bayar and E. Oset. $\bar{K} N N$ Absorption within the Framework of the Fixed Center Approximation to Faddeev equations. 2012.
[BO12b] M. Bayar and E. Oset. Improved Fixed Center Approximation of the Faddeev equations for the $\bar{K} N N$ system with $\mathrm{S}=0$. Nucl.Phys., A883:57-68, 2012.
[DHW08] Akinobu Dote, Tetsuo Hyodo, and Wolfram Weise. K^{-}pp system with chiral SU(3) effective interaction. Nucl.Phys., A804:197-206, 2008.
[DHW09] Akinobu Dote, Tetsuo Hyodo, and Wolfram Weise. Variational calculation of the ppK^{-}system based on chiral SU(3) dynamics. Phys.Rev., C79:014003, 2009.
[FIK $\left.{ }^{+} 11\right]$ M. Faber, A.N. Ivanov, P. Kienle, J. Marton, and M. Pitschmann. Molecule model for kaonic nuclear cluster K̄NN. Int.J.Mod.Phys., E20:1477-1490, 2011.
[IKS10]
[IS07]
[IS09]
[RS14]
[SGM07]
N.V. Shevchenko, A. Gal, and $ل$ Mares. Faddeev calculation of a $K^{-} p p$ quasi-bound state. Phys.Rev.Lett., 98:082301, 2007.
[SGMR07] N.V. Shevchenko, A. Gal, \downarrow Mares, and \downarrow Revai. $\bar{K} N N$ quasi-bound state and the $\bar{K} N$ interaction: Coupled-channel Faddeev calculations of the $\bar{K} N N-\pi \Sigma N$ system. Phys.Rev., C76:044004, 2007.
[WG09] S. Wycech and A. M. Green. Variational calculations for \bar{K}-fewnucleon systems. Phys. Rev. C, 79:014001, 2009.
[YA02] T. Yamazaki and Y. Akaishi. $\left(K^{-}, \pi^{-}\right)$production of nuclear \bar{K} bound states in proton-rich systems via \wedge^{*} doorways. Phys.Lett., B535:7076, 2002.

N* resonances

Figure 6.10: a) $I M_{K+\wedge}$, b) $I M_{p \wedge, ~ c) ~} M M_{K+}$ and d) $M M_{\wedge}$ fitted with the sum of the four $N^{*+}-$ resonances from table 6.2 and the simulation of a direct $\mathrm{pK}+\Lambda$ production.
Master Thesis A. Solaguren-Beascoa Negre

Upper Limit

Dalitz Plots

EXA 2014 - Vienna Robert Münzer

Cross Section

EXA 2014 - Vienna Robert Münzer

EXA 2014 - Vienna Robert Münzer

Multi PWA

EXA 2014 - Vienna
Robert Münzer

Combined Analysis of HADES and FOPI

s:- (Log Likely hood) of PWA

Energy dependent coefficient $=0$

Results of 3_8

EXA 2014 - Vienna Robert Münzer

Results of 3_8

Results of 3_8

Results of 3_8

Combined Analysis of HADES and FOPI

4 Best HADES Solutions HADES-FOPI (ene-fix) $1 _8$ ($s=-0.8310^{5}$) $8 _8\left(s=-0.8210^{5}\right)$ 3_8 ($s=-0.9810^{5}$)
$6 _9\left(s=-0.7810^{5}\right)$

$$
\begin{aligned}
& 4 \text { Best HADES Solutions } \\
& \text { HADES+FOPI (ene_dep) } \\
& \begin{array}{l}
1 _8\left(s=-0.7310^{5}\right) \\
8 _8\left(s=-0.7610^{5}\right) \\
3 _8\left(s=-0.7010^{5}\right) \\
6 _9\left(s=-0.6210^{5}\right)
\end{array}
\end{aligned}
$$

s:- (Log Likely hood) of PWA

Energy dependent coefficient fitted

Results HADES

Results HADES

Results WALL

Results WALL

Results FOPI

Results FOPI

4 PI - param_3_8_ene_dep

4 PI - param_3_8_ene_dep

Legendre Fits

Mean of all solutions

$\cos \left(\theta_{A}^{\mathrm{cm}}\right)$

$\cos \left(\theta_{K p}^{R F_{p}}\right)$

$\cos \left(\theta_{\mathrm{P}}^{\mathrm{cm}}\right)$

$\cos \left(\theta_{K B / T}^{R F}\right)$

$\cos \left(\theta_{k}^{c m}\right)$

$\cos \left(\theta_{P A}^{R E F A}\right)$

Contributions

PWA without Interference

Combined Analysis of HADES and FOPI

| With Interference: |
| :---: | :---: |
| Without Interference:
 1. cfgg $=\Sigma \mathrm{cp} *$ tensor
 2. Cross section $=\Sigma \mathrm{cfgg}^{*} \mathrm{cfgg}^{+}$ |
| 1. $\mathrm{cfgg}=\Sigma\left(\mathrm{cp}^{*}\right.$ tensor $) *\left(\mathrm{cp}^{*} \text { tensor }\right)^{+}$
 2. Cross section $=\Sigma \mathrm{cfgg}$ |

Results of 3_8_wo_int (not fitted)

Results of 3_8_wo_int (not fitted)

EXA 2014 - Vienna Robert Münzer

Results of 3_8_wo_int (100 iter)

Results of 3_8_wo_int (100 iter)

EXA 2014 - Vienna Robert Münzer

[^0]: And the production of $\mathrm{pK}^{+} \wedge$ via non resonant waves

