$N\Delta$ & $\Delta\Delta$ dibaryons revisited EXA 2014, Vienna, Sept. 2014 Avraham Gal, Hebrew University, Jerusalem

- Quark-based expectations for dibaryons.
- Non-strange: from Dyson-Xuong (1964) to Oka-Yazaki (1980) & to Goldman et al. (1989): the INEVITABLE $\Delta\Delta$ dibaryon. 2014 update.
- Experimental discoveries: COSY recent news.
- Long-range dynamics of pions, nucleons & Δ's:
 3-body calculations of NΔ & ΔΔ dibaryons.
 A. Gal, H. Garcilazo, PRL 111, 172301 (2013) and Nucl. Phys. A 928 (2014) 73-88

Dibaryons as six-quark configurations

Color Magnetic (CM) gluon exchange interaction For orbitally symmetric L = 0 color-singlet *n*-quark cluster:

$$V_{CM} \approx \sum_{i < j} -(\lambda_i \cdot \lambda_j)(s_i \cdot s_j)\mathcal{M}_0 \to \left[-\frac{n(10-n)}{4} + \Delta \mathcal{P}_{\mathrm{f}} + \frac{S(S+1)}{3}\right]\mathcal{M}_0$$

where $\mathcal{M}_0 \sim 75$ MeV, $\mathcal{P}_f = \pm 1$ for any symmetric/antisymmetric flavor pair, $\Delta \mathcal{P}_f$ means with respect to the SU(3)_f 1 antisymmetric representation of *n* quarks, n = 3 for a baryon (B) and n = 6 for BB.

For n = 6, SU(3)_f 1 [2,2,2] is Jaffe's **H**(*uuddss*) [PRL 38 (1977) 195]:

$$\mathbf{H} \sim \mathcal{A}[\sqrt{1/8} \ \Lambda \Lambda + \sqrt{1/2} \ N \Xi - \sqrt{3/8} \ \Sigma \Sigma,]_{I=S=0}$$
$$< V_{CM} >_{\mathbf{H}} -2 < V_{CM} >_{\Lambda} = -2\mathcal{M}_0$$

where $4\mathcal{M}_0 = \langle V_{CM} \rangle_{\Delta} - \langle V_{CM} \rangle_N \sim M_{\Delta} - M_N \approx 300 \text{ MeV}$

Leading dibaryon candidates: Oka, PRD 38 (1988) 298

${\mathcal S}$	$\mathrm{SU}(3)_{\mathrm{f}}$	Ι	J^{π}	BB structure	$\Delta < V_{CM} >$
0	$[3,3,0] \ \overline{10}$	0	3^{+}	$\Delta\Delta$	0
-1	[3,2,1] 8	1/2	2^{+}	$\sqrt{1/5} \ (N\Sigma^* + 2 \ \Delta\Sigma)$	$-\mathcal{M}_0$
-2	[2,2,2] 1	0	0^{+}	$\sqrt{1/8} \ (\Lambda\Lambda+2 \ N\Xi - \sqrt{3} \ \Sigma\Sigma)$	$-2\mathcal{M}_0$
-3	[3,2,1] 8	1/2	2^{+}	$\sqrt{1/5} \left[\sqrt{2} N\Omega - (\Lambda \Xi^* - \Sigma^* \Xi + \Sigma \Xi^*) \right]$	$-\mathcal{M}_0$

- Is S=-2 H dibaryon the most bound? SU(3)_f breaking pushes it to ≈NΞ threshold, 26 MeV above ΛΛ threshold. HAL QCD, NPA 881 (2012) 28; Haidenbauer & Meißner, ibid. 44; Shanahan, Thomas & Young, arXiv:1308.1748.
- $N\Omega$ dibaryon: HAL QCD, Nucl. Phys. A 928 (2014) 89.
- Let's focus on the nonstrange $\Delta\Delta$ dibaryon candidate

Nonstrange s-wave dibaryon SU(6) predictions F.J. Dyson, N.-H. Xuong, PRL 13 (1964) 815

dibaryon	Ι	S	SU(3)	legend	mass	
\mathcal{D}_{01}	0	1	$\overline{10}$	deuteron	A	
${\cal D}_{10}$	1	0	27	nn	A	
\mathcal{D}_{12}	1	2	27	$N\Delta$	A + 6B	
\mathcal{D}_{21}	2	1	35	$N\Delta$	A + 6B	
\mathcal{D}_{03}	0	3	$\overline{10}$	$\Delta\Delta$	A + 10B	
\mathcal{D}_{30}	3	0	28	$\Delta\Delta$	A + 10B	

Assuming 'lowest' SU(6) multiplet, 490, within 56 × 56. M=A+B[I(I+1)+S(S+1)-2], A=1878 MeV from $M(d)\approx M(v)$. B = 47 MeV from $M(\mathcal{D}_{12})\approx 2160$ MeV observed in $\pi^+d \rightarrow pp$. Hence, $M(\mathcal{D}_{03}) = M(\mathcal{D}_{30}) \approx 2350$ MeV $[2M(\Delta) \approx 2465$ MeV].

Quark-based model calculations of \mathcal{D}_{03} & \mathcal{D}_{12}										
$M({\rm GeV})$	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	$\exp/phen$	
$\mathcal{D}_{03} (\Delta \Delta)$	2.35	2.36	2.46	2.38	≤ 2.26	2.40	2.46	2.36**	2.37	
$\mathcal{D}_{12} (N\Delta)$	2.16^{*}	2.36	_	2.36		_	2.17		≈ 2.15	

- 1. Dyson-Xuong, PRL 13 (1964) 815; *input.
- 2. Mulders-Aerts-de Swart, PRD 21 (1980) 2653.
- 3. Oka-Yazaki, PLB 90 (1980) 41.
- 4. Mulders-Thomas, JPG 9 (1983) 1159.
- 5. Goldman-Maltman-Stephenson-Schmidt-Wang, PRC 39 (1989) 1889.
- 6. Yuan-Zhang-Yu-Shen-Huang-Wang-Wong, 60 (1999) 045203; 1408.0458.
- 7. Mota-Valcarce-Fernandez-Entem-Garcilazo, PRC 65 (2002) 034006.
- 8. Ping-Huang-Pang-Wang, PRC 79 (2009) 024001, 89 (2014) 034001.
- BOTH \mathcal{D}_{12} & \mathcal{D}_{03} predicted correctly only by [1].

Recent news from WASA@COSY

Evidence for $\mathcal{D}_{03}(2370)$, $B \sim 90$ & $\Gamma \sim 70$ MeV Adlarson et al. PRL 106 (2011) 242302 & 112 (2014) 202301

from $pd \to d\pi^0 \pi^0 + p_s$ also in $pd \to d\pi^+ \pi^- + p_s$

 ${}^{3}D_{3} - {}^{3}G_{3} pn$ resonance *np* analyzing power

SAID NN fit requires a resonance pole Given $\Gamma(\Delta) \approx 120$ MeV, what makes \mathcal{D}_{03} that narrow?

 ${}^{3}G_{3}$ Argand diagram

 ϵ_3 mixing parameter

Pair correlations and particle distributions

Plots at $\sqrt{s}=2.38$ GeV from Adlarson et al. (WASA@COSY), PRL 106, 242302 (2011)

Dalitz plot projections at $\sqrt{s}=2.38$ GeV

from Adlarson et al. (WASA@COSY), PRL 106, 242302 (2011) Curves denote calculations for a *s*-channel resonance decaying to $\Delta\Delta$ with $J^P=3^+$ (solid) & $J^P=1^+$ (dash). Shaded areas denote phase-space distributions. Long-range dynamics of dibaryons A.Gal, H.Garcilazo, PRL 111, 172301 (2013) Nucl. Phys. A 928 (2014) 73-88

$\mathcal{D}_{12} N\Delta$ dibaryon candidate

$\Delta N | (J^P) = 1(2^+)$ Dibaryon

 $NN \leftrightarrow \pi d$ reactions resonate near $N\Delta$ threshold Hoshizaki, PTP 89 (1993) 563: W=2144-i55 MeV Arndt et al. PRD 35 (1987) 128: W=2148-i63 MeV

$\mathcal{D}_{12}(2150) \ N\Delta \ \text{dibaryon}$ near threshold (2.17 GeV)

- Long ago established in coupled-channel pp(¹D₂) ↔ π⁺d(³P₂) scattering & reactions. Hoshizaki's & Arndt et al's analyses: M ≈ 2.15 GeV, Γ ≈ 110 - 130.
- Nonrelativistic πNN Faddeev calculation, Ueda (1982): M = 2.12 GeV, $\Gamma = 120$ MeV.
- Our relativistic-kinematics Faddeev calculation gives $M \approx 2.15$ GeV, $\Gamma \approx 120$ MeV.
- $M \& \Gamma$ robust to variations of $NN \& \pi N$ input.

Separable potential fits to $NN \& \pi N$ data

Separable s-wave potentials $v_j \Rightarrow$ sparable t matrices t_j entering πNN Faddeev equations: $T_i = t_i + t_i G_0 \sum_{j \neq i} T_j$ Solve for $I(J^P) = 1(1^+), 1(2^+), 2(1^+), 2(2^+)$ corresponding to $N\Delta$ -acceptable $I(J^P)$ values.

- For separable interactions, Faddeev equations reduce to one effective 2-body equation.
 Resonance poles: IJ = 12, 21 (yes), 11, 22 (no).
 W(D₁₂) ≈ 2153 i65, W(D₂₁) ≈ 2167 i67 (MeV)
- Given this D₁₂(2150) NΔ dibaryon, how does one find a related NΔ-isobar form factor?

Construction of $N\Delta$ form factor

- Construct (NN)_{ℓ=2}-(NN')_{ℓ=0}-(NΔ')_{ℓ=0} separable potential. N'-fictitious P₁₃ baryon with
 m_{N'} = m_π + m_N to generate πNN inelastic cut.
 Δ'- stable Δ with m_{Δ'} = 1232 MeV.
- No ad-hoc pole is introduced into $(N\Delta')_{\ell=0}$.
- Require form-factor cutoff mommenta $\leq 3 \text{ fm}^{-1}$ to be consistent with long-range physics e.g. no $\pi N \rightarrow \rho N$.
- Fitting $NN \ \delta({}^{1}D_{2})$ & $\eta({}^{1}D_{2})$ determines the $\mathcal{D}_{12}(2150)$ -isobar $(N\Delta')_{\ell=0}$ form factor.

Fitting NN $\delta(^1D_2)$ & $\eta(^1D_2)$

Dashed: gwdac.phys.gwu.edu [SAID], Solid: best fit

Calculation of $\mathcal{D}_{03}(2370) \Delta \Delta$ dibaryon in terms of π 's, N's & Δ 's

- Approximate $\pi\pi NN$ problem by $\pi N\Delta'$ problem.
- Separable pair interactions: $\pi N \Delta$ -isobar form factor by fitting $\delta(P_{33})$; $N\Delta' \mathcal{D}_{12}(2150)$ -isobar form factor by fitting $NN(^1D_2)$ scattering.
- 3-body S-matrix pole equation reduces to effective $\Delta \Delta'$ diagram:

- Searching numerically for S-matrix resonance poles by going complex, q_j → q_j exp(-iφ), thus opening sections of the unphysical Riemann sheet to accommodate poles of the form W = M − iΓ/2.
- In the πN propagator, where Δ' is a spectator, replace real mass m_{Δ'}=1232 MeV by Δ-pole complex mass m_Δ=1211-i49.5×(2/3) MeV, x=2/3 accounting for quantum-statistics correlations for decay products of two I(JP)=0(3+) Δ's, assuming s-wave decay nucleons.

Results & Discussion

- Using 0.9 & 1.3 fm sized P₃₃ form factors: M=2363±20, Γ=65±17, (x=1: 78±17 MeV) in good agreement with WASA@COSY.
- Although bound w.r.t. ΔΔ, D₀₃(2370) is resonating w.r.t. the π – D₁₂(2150) threshold. The subsequent decay D₁₂(2150) → πd is seen in the πd Dalitz plot projection.
- NN-decoupled dibaryon resonances D₂₁ & D₃₀ predicted 10-30 MeV higher, respectively; see also Bashkanov-Brodsky-Clement, Novel 6q Hidden-Color Dibaryons in QCD, PLB 727 (2013) 438. Width calculation?

Recent Quark Model Calculations

- Orbitally symmetric [6] I(JP)=0(3+) w.f. is $\sqrt{1/5}\Delta\Delta + \sqrt{4/5}CC$. How do CC hidden-color components affect the mass & width?
- H. Huang et al., PRC 89 (2014) 034001, use the Salamanca chiral quark model (CQM) to go from 1→4 ΔΔ channels, then to full 10: M = 2425 → 2413 → 2393 MeV Γ=177→175→150 MeV, so Γ is too big.
- F. Huang et al., arXiv 1408.0458, find in their own CQM: M≈2390 MeV & 67% CC, arguing for a BIG ∆∆ width-suppression since CC components are not subject to strong decay...

Summary

- The two experimentally established nonstrange (s-wave ?) dibaryons D₁₂(2150) and D₀₃(2370) are quantitatively derived from long range physics description requiring only pions, nucleons and Δ's for input.
- Search for other, in particular \mathcal{D}_{21} & \mathcal{D}_{30} dibaryon candidates.
- Develop EFT description for these dibaryons.
- Does Σ(1385) play the role of Δ(1232) for strange dibaryon candidates? see Garcilazo-Gal, NPA 897 (2013) 167. Many thanks to my coauthor Humberto Garcilazo