## Baryonium a common ground for atomic and high energy physics

S. Wycech, NCBJ, Warsaw

### Content

### Old failures Contemporary signals

 $J/\Psi \rightarrow N \overline{N} \gamma \qquad J/\Psi \rightarrow (\pi \pi \eta')_{\times} \gamma$ 

antiprotonic atoms

radiochemical studies of p absorption in nuclei

### TOPICS at CERN 1980-90

• 2 quark – 2 antiquark

N N → N N
 G - parity transformation Vπ → -Vπ
 No Pauli exclusion - many quasi-bound states



Fig. 2.  $\gamma$ -spectrum after subtracting a smooth background as described in the text. The two structures are due to the reactions  $\pi^- + p \rightarrow \pi^0 + n$ and  $\pi^- + p \rightarrow \gamma + n$ .

#### R. Bertini... Nucl.Ph. B209(82)269

1.3 GeV/c p-bar d  $\rightarrow$  p X



Missing mass dσ/dω <8 μb/str

too many partial waves at lower momentum It would be better



NEW ERA Decays of charmonium → nucleon – antinucleon

## **Selective BES experiments**

 $J/\psi \to \gamma p \bar{p}$ 

| decay mode                       | analogue           | $J^{PC}[\gamma \text{ or } \pi^0]$ | $J^{PC}[p\bar{p}]$ | relative l |
|----------------------------------|--------------------|------------------------------------|--------------------|------------|
| $\gamma p \bar{p}(^1S_0)$        | $\gamma\eta(1405)$ | 1                                  | $0^{-+}$           | 1          |
| $\gamma p \bar{p} ({}^{3}P_{0})$ | $\gamma f_0(1710)$ | 1                                  | $0^{++}$           | 0          |
| $\gamma p \bar{p} (^{3}P_{1})$   | $\gamma f_1(1285)$ | 1                                  | $1^{++}$           | 0          |

# Strong final state attraction in 1 S<sub>0</sub> in particular in isospin 0



# X(1835) by BES

 $J/\psi \to \gamma \pi^+ \pi^- \eta'$ 



### A model for final state meson emission

works for  $\pi$ ,  $\omega$ ,  $\Phi$  - spectrum and rate fails for  $\gamma$  – no peaks, rate too small

J-P.D,B.L,SW



# Radiation before/during hadronisation



### Two Peaks bound (or virtual state) and Shape resonance



Nature of the peak may be seen under the

# Potential in <sup>11</sup>S Paris



Paris,Bonn, Paris,K-W, D-R, B-P potentials To discern – go under threshold



#### **Below threshold**

#### X(1835) is an interference of "extended " bound state PARIS POTENTIAL INTERPTETATION



### <sup>1</sup>S amplitude below threshold

broad state, strong  $\Gamma(E)$  dependence



ATOMIC REGION

### ATOMIC HINTS



E=-Binding -Recoil

Т

He 4

Antiprotonic atom data widths and lower level shifts

Hydrogen1s , 2p<br/>fine structureCERN -PS- 207Deuteron1s, 2pCERN -PS- 207<sup>3</sup>He , <sup>4</sup>He2p, 3dM.Schneider

Calculation with length  $a_s$ ,  $a_P$ 

# Absorptive parts of S-wave p N scattering lengths extracted from light atoms

The rise consistent with baryonium but not a proof



# Imaginary part of P-wave p-bar amplitude from light atoms

something happens on deuterium



## P wave exotics

## **PS 203/CERN**

stopped antiprotons, A.Trzcinska

#### Annihilation



in the experiment we measure:

yields 
$$\left\{ \begin{array}{l} \mathsf{Y}_{\mathsf{N}_{\mathsf{t}}-1} \sim \rho_{\mathsf{n}}(r_{\mathsf{anih.}}) \\ \mathsf{Y}_{\mathsf{Z}_{\mathsf{t}}-1} \sim \rho_{\mathsf{p}}(r_{\mathsf{anih.}}) \end{array} \right.$$

$$f_{halo} = \frac{Y_{N_t-1}}{Y_{Z_t-1}} \cdot \frac{Z}{N} \cdot \frac{Im \, a_{p\overline{p}}}{Im \, a_{n\overline{p}}}$$

$${\sf f}_{\sf halo} \sim rac{
ho_{\sf n}}{
ho_{\sf p}}({\sf at annihilation place})$$

annihilation place  $\simeq c_{p}$  +2.5 fm

### Radiochemical measurements of residual nuclei after p-bar absorption



### Proton halo simulated



### <sup>11</sup>S summary Paris potential approach

• X(1835) and X(1876)

Interpreted as the same effect of quasi –bound state

- generated by conventional meson exchange forces
- X(2170) shape resonance

generated by conventional meson exchange forces

+ assumption that system expands slightly during radiation

### Guidelines : Paris N-Nbar potential

#### model 2009: 4000 data

M. Lacombe, B. Loiseau, S.W. ... C79(09)054001

TABLE III: Binding energy in MeV of the close to threshold quasi-bound states of the present model and of the Paris 99 potential [8].

| $2T+1 \ 2S+1L_J$             | Present work | Paris 99 |
|------------------------------|--------------|----------|
| <sup>11</sup> S <sub>0</sub> | -4.8-i26     |          |
| <sup>33</sup> P <sub>1</sub> | -4.5-i9.0    | -17-i6.5 |

### Model dependence is sizeable

# P wave quasi-bound state indications

PS 207

Evidence

- p atomic level widths in H, <sup>2</sup>H, <sup>3</sup>He , <sup>4</sup>He
- Radiochemical studies of N-1, Z-1 nuclei in nuclear p capture
   PS 203, 208

#### Helpful experiments

- Fine structure resolution in antiprotonic light atoms
- Peripheral antiproton-nucleus collisions
- p-pbar  $\rightarrow \gamma$  + X at ~ 200 MeV , polarized
- d-pbar  $\rightarrow$  p + X at low energies
- Atomic transitions to nuclear states
   X(1835) difficult, P –wave state easier

### Thank you

# appendix

# Inverse process - PANDA

# $p p \rightarrow J/\psi + meson$



J/ψ p p<sub>bar</sub>

### Reasonable description : $\pi$ , $\gamma$ , $\omega$ , $\Phi$

## Decays of J/ψ in nucleus

production with fast antiproton

 $\rightarrow$  fast J/ $\psi$  leaves nucleus

# $p p \rightarrow J/\Psi + \pi$ (or $\omega$ ) Special momentum : meson goes forward in CM

~20nb/str

# Peripheral collisions, PANDA

Invariant mass of pions to measure



### Peaks at the end of heavy background