PRİME

Spectroscopy of η^{\prime} nucleus bound states at GSI and FAIR

 －very preliminary results and future prospects－Hiroyuki Fujioka（Kyoto Univ．） on behalf of the η－PRiME collaboration

n-PRiME Collaboration

Y. Ayyad, J. Benlliure, K.-T. Brinkmann, S. Friedrich, H. Fujioka (**), H. Geissel, J. Gellanki, C. Guo, E. Gutz, E. Haettner, M.N. Harakeh, R.S. Hayano, Y. Higashi, S. Hirenzaki, C. Hornung, Y. Igarashi, N. Ikeno, K. Itahashi(*), M. Iwasaki, D. Jido, N. Kalantar-Nayestanaki, R. Kanungo, R. Knoebel, N. Kurz, V. Metag, I. Mukha, T. Nagae, H. Nagahiro, M. Nanova, T. Nishi, H.J. Ong, S. Pietri, A. Prochazka, C. Rappold, P. Reiter, J.L.R. Sanchez, C. Scheidenberger, H. Simon, B. Sita, P. Strmen, B. Sun, K. Suzuki, I. Szarka, M. Takechi, Y.K. Tanaka, I. Tanihata, S. Terashima, Y.N. Watanabe, H. Weick, E. Widmann, J.S. Winfield, X. Xu, H. Yamakami, J. Zhao
${ }^{(*)}$ spokesperson ${ }^{* *}$) co-spokesperson
Osaka University, Universidade de Santiago de Compostela, Universitaet Giessen, Kyoto University, GSI, University of Groningen, Beihang University, The University of Tokyo, Nara Women's University, KEK, RIKEN, Tokyo Metropolitan University, Saint Mary's University, Technische Universitaet Darmstadt, Comenius University Bratislava, Stefan Meyer Institut, Niigata University

introduction

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

Nagahiro et al., PRC 87, 045201 (2013)

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

η^{\prime} meson in medium

* At finite density/temperature, chiral symmetry will be partially restored
- cf. deeply-bound pionic atom (talk by Itahashi)
* large mass reduction, as a consequence of suppression of the anomaly effect?
* optical potential: $\mathrm{V}(\mathrm{r})=\left(\mathrm{V}_{0}+\mathrm{i} \mathrm{W}_{0}\right) \rho(\mathrm{r}) / \rho_{0}$
- $\left|\mathrm{V}_{0}\right|=$ (mass reduction), $2\left|\mathrm{~W}_{0}\right|=$ (absorption width)

Nambu-Jona-Lasinio model

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

chiral unitary model

\rightarrow talk by Nagahiro (Wed)

Oset and Ramos, PLB 704, 334 (2011) Nagahiro et al., PLB 709, 87 (2012)
chiral
unitary $\underline{\operatorname{Re} V_{\eta^{\prime}} \text { and } \operatorname{Im} V_{\eta^{\prime}} \text { with various } \alpha \text { values }}$
Nagahiro, presentation at "Hadron in Nucleus"
in unit of MeV

$\boldsymbol{\alpha}$	$\left\|\boldsymbol{a}_{\boldsymbol{\eta}^{\prime} \boldsymbol{N}}\right\| \mathbf{f m}$	$\boldsymbol{V}_{\boldsymbol{\eta}^{\prime}}^{1 \text { st }}\left(\boldsymbol{\rho}_{\mathbf{0}}\right)$	$\boldsymbol{V}_{\boldsymbol{\eta}^{\prime}}^{2 \boldsymbol{n d}}\left(\boldsymbol{\rho}_{\mathbf{0}}\right)$	$\boldsymbol{V}_{\boldsymbol{\eta}^{\prime}}^{\text {total }}\left(\boldsymbol{\rho}_{\mathbf{0}}\right)$
-0.193	0.1	$-8.6-1.7 i$	$-0.1-0.1 i$	$-\mathbf{8 . 7 - 1 . 8 i}$
-0.834	0.3	$-26.3-2.1 i$	$-0.6-0.9 i$	$-\mathbf{2 6 . 8}-\mathbf{3 . 0 i}$
-1.79	0.5	$-43.8-3.0 i$	$-1.3-2.5 i$	$-\mathbf{4 4 . 1}-\mathbf{5 . 5 i}$
-9.67	1.0	$-87.7-6.9 i$	$-4.1-10.4 i$	$\mathbf{- 9 1 . 8}-\mathbf{1 7 . 2 i}$

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

linear sigma model

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

quark-meson coupling model

Bass and Thomas,

Acta Phys. Pol. B 41 (2010) 2239; ibid. 45 (2014) 627

	$m(\mathrm{MeV})$	$m^{*}(\mathrm{MeV})$	$\operatorname{Re} a(\mathrm{fm})$
η_{8}	547.75	500.0	0.43
$\eta\left(-10^{\circ}\right)$	547.75	474.7	0.64
$\eta\left(-20^{\circ}\right)$	547.75	449.3	0.85
η_{0}	958	878.6	0.99
$\eta^{\prime}\left(-10^{\circ}\right)$	958	899.2	0.74
$\eta^{\prime}\left(-20^{\circ}\right)$	958	921.3	0.47

linear QMC

\rightarrow talk by Bass (Fri)

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

transparency ratio measurement

transparency ratio

$$
T_{A}=\frac{\sigma\left(\gamma A \rightarrow \eta^{\prime} X\right)}{A \cdot \sigma\left(\gamma N \rightarrow \eta^{\prime} X\right)}
$$

$\rightarrow \Gamma=15-25 \mathrm{MeV}$ at $\rho=\rho_{0}$ for $\left\langle\mathrm{p}_{\mathrm{n}}{ }^{\prime}>\sim 1.05 \mathrm{GeV} / \mathrm{c}\right.$

Nanova et al., PLB 710, 600 (2012)

\rightarrow talk by Metag

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

$\mathrm{V}_{0}=-(40 \pm 6) \mathrm{MeV}$
CBELSA/TAPS
$\mathrm{V}_{0}=-(32 \pm 11) \mathrm{MeV}$ chiràl.

Nanova et al., PLB 727, 417 (2013)

Moskal et al., PLB 474, 416 (2000)
$\left|R e a_{n^{\prime}}\right|<0.8 f m$

\rightarrow talk by Moskal

$\left|\mathrm{an}_{n^{\prime}} \mathrm{N}\right| \sim 0.1 \mathrm{fm}$
Moskal et al., PLB 482, 356 (2000)
Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

Czerwiński et al., PRL 113, 062004 (2014)

\rightarrow talk by Moskal linear
Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Ey tic Atoms and Related Topics" (EXA 014)

η^{\prime} optical potential: state of the art 15

$\begin{array}{cc}-150 & -100 \\ \text { Chiral Unitary Model }\end{array}$
$|\operatorname{ReV}|>||m \mathrm{~V}|$
$\rightarrow \eta^{\prime}$ bound state?

and CBELSA/TAPS favor

NJL
linear σ QMC
W_{0} [MeV]
(=-Г/2)
Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Ey ptic Atoms and Related Topics" (EXA 014)

spectroscopy of η^{\prime} mesic nuclei at GSI

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

${ }^{12} C(p, d)$ reaction

* intense proton beam available
* relatively large momentum transfer
- population of large $\ell_{n^{\prime}}$ states near threshold
- different rigidities between protons and deuterons (from an experimental point of view)

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

theoretical calculation

* elementary cross section : $\mathrm{d} \sigma / \mathrm{d} \Omega\left(\mathrm{pn} \rightarrow \mathrm{d} \eta^{\prime}\right)=30 \mu \mathrm{~b} / \mathrm{sr}$
* relatively large momentum transfer
- population of large $\ell_{\eta^{\prime}}$ states near threshold

Nagahiro et al., PRC 87, 045201 (2013)
Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

GSI accelerator facility

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

GSI S437 experiment (*)

Letter of Intent for GSI-SIS
Spectroscopy of η^{\prime} MESIC NUCLEI WITH (p, d) REACTION

K. Itahashi, HF et al., PTP 128, 601 (2012)

* intense proton beam from SIS-18 (~1010/spill)
* $4 \mathrm{~g} / \mathrm{cm}^{2}$-thick ${ }^{12} \mathrm{C}$ target
: high resolution measurement of deuteron by FRS
* overall missing-mass resolution : $\sigma<2 \mathrm{MeV} / \mathrm{c}^{2}$
(*) under the framework of the Super-FRS collaboration

experimental setup

S0-S2: achromatic
S0-S4: dispersive (~38mm/\%)

S1
aerogel Cerenkov counter

experimental setup

S0-S2: achromatic

S0-S4: dispersive (~38mm/\%)

S1
aerogel Cerenkov counter

aerogel Cerenkov counter

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

experimental setup

$\stackrel{2.5}{-} \mathrm{GeV}_{\text {proton }}$
S0-S2: achromatic
S0-S4: dispersive (~38mm/\%)
St
aerogel Cerenkov counter
${ }^{12} \mathrm{C}$ target
2.7-2.9 GeV /c
p/d separation (planned)
on-line: aerogel Cerenkov counter offline: TOF between S2 and S4

expected spectrum w/ 4.5-day DAQ

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

* Production Run (~ 5 days) : C(p,d) @ $\mathrm{T}_{\mathrm{p}}=2.5 \mathrm{GeV}$
- intensity (3-4) $\times 10^{10}$ /spill ${ }^{\text {FRS scaling }}$
- target thickness $4 \mathrm{~g} / \mathrm{cm}^{2}$

0\%
+2\%

- FRS scaling from -2% to 2%

- (5-10) $\times 10^{6}$ deuterons in each scaling mode
* Calibration Run : D(p,d)p @ $T_{p=1.6 G e V}$
* Reference Run : D(p,d) @ $\mathrm{T}_{\mathrm{p}}=2.5 \mathrm{GeV}$
- background measurement $(p+(p / n) \rightarrow d+$ multi π 's $)$

Calibration Run: D(p,d)p

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

particle identification

unbiased p/d ratio ~200
proton: 99.5% rejection
TOF trigger p / d ratio ~ 1
note: Cerenkov counters were not used for triggering purpose.

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

particle identification

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

particle identification

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

particle identification

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

TOF(S2-S4) vs TOF(SC41-SC42)

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

FAIR under construction

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

FAIR under construction

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

inclusive measurement at FAIR

from FRS to Super-FRS

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

all-in-one readout board

* one order of magnitude higher trigger rate
* R\&D of 64ch readout board for MWDC
- ASD + FlashADC + TDC
- originally developed for Belle-II CDC
- sub-trigger module for trigger distribution

H. Yamakami (Kyoto Univ.) Taniguchi et al., NIM A732, 540 (2013)
Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

semi-exclusive measurement at FAIR

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

Why semi-exclusive measurement?

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

coincidence of decay particles

* one-nucleon absorption: $\eta^{\prime} \mathrm{N} \rightarrow \eta \mathrm{N},(\pi \mathrm{N})$
* two-nucleon absorption: $\eta^{\prime} \mathrm{NN} \rightarrow \mathrm{NN}$
- higher energy than in any mesonic processes

Nagahiro et al., PRC 87, 045201 (2013)
Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

high-energy protons from n' mesic nuclei 38

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

high-energy protons from BG (multi п)

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

from FRS to Super-FRS

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

from FRS to Super-FRS

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

from FRS to Super-FRS

Hiroyuki Fujioka (Kyoto Univ.), "International Conference on Exotic Atoms and Related Topics" (EXA2014)

range counter for proton detection

* just conceptual...
- 10 layers of Sci/Brass sampling calorimeter
- $\mathrm{p} / \pi^{ \pm}$separation by use of neural network?
- work in progress
proton beam

conclusion

conclusion

* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* inclusive measurement of (p, d) reaction at GSI/FAIR
* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* inclusive measurement of (p, d) reaction at GSI/FAIR
- high statistics and high resolution
* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* inclusive measurement of (p, d) reaction at GSI/FAIR
- high statistics and high resolution
- near-threshold structure $=$ signature of attractive int.
* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* inclusive measurement of (p, d) reaction at GSI/FAIR
- high statistics and high resolution
- near-threshold structure $=$ signature of attractive int.
- First experiment S437 carried out in August 2014
* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* inclusive measurement of (p, d) reaction at GSI/FAIR
- high statistics and high resolution
- near-threshold structure $=$ signature of attractive int.
- First experiment S437 carried out in August 2014
- verified experimental feasibility
* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* inclusive measurement of (p, d) reaction at GSI/FAIR
- high statistics and high resolution
- near-threshold structure $=$ signature of attractive int.
- First experiment S437 carried out in August 2014
- verified experimental feasibility
- DAQ upgrade in progress for higher statistics at FAIR
* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* inclusive measurement of (p, d) reaction at GSI/FAIR
- high statistics and high resolution
- near-threshold structure $=$ signature of attractive int.
- First experiment S437 carried out in August 2014
- verified experimental feasibility
- DAQ upgrade in progress for higher statistics at FAIR
* semi-exclusive measurement planned at FAIR
* possible existence of η^{\prime}-nucleus bound state, due to partial restoration of chiral symmetry in medium
* inclusive measurement of (p, d) reaction at GSI/FAIR
- high statistics and high resolution
- near-threshold structure $=$ signature of attractive int.
- First experiment S437 carried out in August 2014
- verified experimental feasibility
- DAQ upgrade in progress for higher statistics at FAIR
* semi-exclusive measurement planned at FAIR
- high-energy proton from $\eta^{\prime} \mathrm{pN} \rightarrow \mathrm{pN}$ in coincidence

