πK atom lifetime and πK scattering length measurements

V. Yazkov ¹ on behalf of the DIRAC collaboration

¹Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

International Conference on Exotic Atoms and Related Topics - EXA2014 Wien, Austria, September 15-19, 2014

DIRAC collaboration

🙀 CERN <i>Geneva</i> , Switzerland	Tokyo Metropolitan University Tokyo Lapan
Czech Technical University Prague, Czech Republic	IFIN-HH
Institute of Physics ASCR Prague, Czech Republic	JINR
Nuclear Physics Institute ASCR <i>Re</i> z, Czech Republic	SINP of Moscow State University
INFN-Laboratori Nazionali di Frascati <i>Frascati,</i> Italy	Moscow, Russia
University of Messina Messina, Italy	Protvino, Russia Santiago de Compostela University
• KEK <i>Tsukuba</i> , Japan	Santiago de Compostela, Spain Bern University
• Kyoto University <i>Kyoto</i> , Japan	<i>Bern</i> , Switzerland
• Kyoto Sangyo University <i>Kyoto</i> , Japan	Zurich University Zurich, Switzerland
V. Yazkov (SINP) πK atom lifetime an	4 □ ▷ 4 🗇 ▷ 4 ≧ ▷ 4 ≧ ▷ 3 ≧ ▷ 3 d πK scattering length EXA2014, Sept. 15-19

Contents

- Low-energy QCD precise predictions
- Method of $\pi\pi$ and πK atom investigation
- DIRAC setup
- Status of $K^+\pi^-$, π^+K^- atom investigation

4 A 1

Low energy QCD predictions

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EX A2014, Sept. 15-19 4 / 1

$\pi\pi$ scattering lengths

In ChPT the effective Lagrangian, which describes the $\pi\pi$ interaction, is an expansion in (even) terms:

$$L_{eff} = \frac{L^{(2)}}{(tree)} + \frac{L^{(4)}}{(1-loop)} + \frac{L^{(6)}}{(2-loop)} + \cdots$$

Colangelo et al. in 2001, using ChPT (2-loop)& Roy equations:

$$\left.\begin{array}{l} a_0 = 0.220 \pm 2.3\% \\ a_2 = -0.0444 \pm 2.3\% \end{array}\right\} a_0 - a_2 = 0.265 \pm 1.5\%$$

These results (precision) depend on the low-energy constants (LEC) l_3 and l_4 . Lattice gauge calculations from 2006 provided values for these l_3 and l_4 .

Because l_3 and l_4 are sensitive to the quark condensate, precision measurements of a_0 , a_2 are a way to study the structure of the QCD vacuum.

V. Yazkov (SINP)

 $\pi \mathbf{K}$ atom lifetime and $\pi \mathbf{K}$ scattering length

EXA2014, Sept. 15-19 5 / 1

Image: A marked and A marked

Lattice calculations of \bar{l}_3 , \bar{l}_4

- 2006: l_3 , l_4 first lattice calculations
- 2012: 10 collaborations: 3 USA, 5 Europe, 2 Japan
- J. Gasser, H. Leutwyler: Model calculation (1985) $\bar{l}_3=2.6\pm2.5,\ \Delta \bar{l}_3/\bar{l}_3pprox 1$
- Lattice calculations in near future will obtain $\Delta \bar{l}_3/\bar{l}_3 \approx 0.1$ or $\Delta \bar{l}_3 \approx 0.2 0.3$
- To check the predicted values of l_3 the experimental relative errors of $\pi\pi$ -scattering lengths and their combinations must be at the level (0.2 - 0.3)%

4 6 1 1 4

πK scattering lengths

I . ChPT predicts s-wave scattering lengths:

 $L^{(2)}$, $L^{(4)}$ and 1-loop

$$b_0^{1/2}=0.19\pm 0.02$$
 , $a_0^{3/2}=-0.05\pm 0.02$

$$a_0^{1/2} - a_0^{3/2} = 0.24 \pm 0.03$$

$$a_0^{1/2} - a_0^{3/2} = 0.23 \pm 0.01$$

A. Roessl - 1999

V. Bernard, N. Kaiser, U. Meissner - 1991

 $L^{(2)}, L^{(4)}, L^{(6)}$ and 2-loop

$$a_{1/2} - a_{3/2} = 0.267$$

J. Bijnens, P. Dhonte, P. Talavera - April 2004

II . Roy-Steiner equations:

$$a_0^{1/2} - a_0^{3/2} = 0.269 \pm 0.015$$

P. Büttiker et al. - 2004

イロト イロト イヨト イ

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EXA2014, Sept. 15-19 7 / 1

πK scattering lengths

III . S-wave πK scattering has also been studied extensively in the framework of lattice QCD

Recently predictions for πK scattering have been obtained:

$$a_0^{1/2} = 0.183 \pm 0.039, a_0^{3/2} = -0.0602 \pm 0.0040$$
C.B. Lang et al., Phys. Rev.
D86 (2012) 054508

$$a_0^- = \frac{1}{3}(a_0^{1/2} - a_0^{3/2}) = 0.0811 \pm 0.0143$$
K. Sasaki et al., Phys. Rev.
D89 (2014) 054502

πK scattering

What new will be known if πK scattering lengths will be measured?

The measurement of the s-wave πK scattering lengths would test our understanding of the chiral $SU(3)_L \times SU(3)_R$ symmetry breaking of QCD (u, d and s quarks), while the measurement of $\pi \pi$ scattering lengths checks only the $SU(2)_L \times SU(2)_R$ symmetry breaking (u,d quarks).

This is the principal difference between $\pi\pi$ and πK scattering!

Experimental data on the πK low-energy phases are absent.

Pionium lifetime

Pionium $(A_{2\pi})$ is a hydrogen-like atom consisting of π^+ and π^- mesons:

$$E_B = -1.86 \, keV, \, r_B = 387 \, fm, \, p_B \approx 0.5 \, MeV$$

The lifetime of $\pi^+\pi^-$ atoms is dominated by the annihilation process into $\pi^0\pi^0$:

$$\pi^{+}$$

$$\pi^{-}$$

$$\pi^{0}$$

$$\Gamma = \frac{1}{\tau} = \Gamma_{2\pi0} + \Gamma_{2\gamma} \text{ with } \frac{\Gamma_{2\gamma}}{\Gamma_{2\pi0}} \approx 4 \times 10^{-3}$$

$$\Gamma_{15,2\pi^{0}} = R | a_{0} - a_{2} |^{2} \text{ with } \frac{\Delta R}{R} \approx 1.2\%$$

$$\tau = (2.9 \pm 0.1) \times 10^{-15} s$$
Gasser et al. - 2001

 a_0 and a_2 are the $\pi\pi$ S-wave scattering lengths for isospin I = 0 and I = 2.

$$\frac{\Delta\tau}{\tau} = 9\% \quad \Rightarrow \quad \frac{\Delta|a_0 - a_2|}{|a_0 - a_2|} = 4.3\%$$

V. Yazkov (SINP)

Published results on $\pi\pi$ scattering lengths

DIRAC	$ au_{1s}(10^{-15}s)$	$ a_0 - a_2 $	Reference
data	value stat syst theo * tot	value stat syst theo st tot	
2001	$2.91^{+0.45}_{-0.38}^{+0.49} \begin{bmatrix} +0.49\\ -0.62 \end{bmatrix}$	$0.264^{+0.017+0.022}_{-0.020-0.009} \begin{bmatrix} +0.033\\ -0.020 \end{bmatrix}$	PL B 619 (2005) 50
2001-03	$3.15^{+0.20+0.20}_{-0.19-0.18} \begin{bmatrix} +0.28\\ -0.26 \end{bmatrix}$	$0.2533^{+0.0078+0.0072}_{-0.0080-0.0077} \begin{bmatrix} +0.0106\\ -0.0111 \end{bmatrix}$	PL B 704 (2011) 24

* theoretical uncertainty included in systematic error

NA48	K-decay	$a_0 - a_2$	Reference
		value stat syst theo tot	
2009	$K_{3\pi}$	$0.2571 \pm 0.0048 \pm 0.0029 \pm 0.0088$	EPJ C64 (2009) 589
2010	$K_{e4}\&K_{3\pi}$	$0.2639 \pm 0.0020 \pm 0.0015$	EPJ C70 (2010) 635

$K^+\pi^-$ and π^+K^- atoms lifetime

 πK -atom ($A_{\pi K}$) is a hydrogen-like atom consisting of K^+ (K^-) and π^- (π^+) mesons:

$$E_B = -2.9 \ keV, \ r_B = 248 \ fm, \ p_B pprox 0.8 \ MeV$$

The πK -atom lifetime (ground state 1S), $\tau = \frac{1}{\Gamma}$ is dominated by the annihilation process into $\pi^0 K^0$:

$$A_{K^+\pi^-} \to \pi^0 K^0, \ A_{\pi^+K^-} \to \pi^0 \bar{K^0}$$
$$\Gamma_{15,\pi^0 K^0} = R_K \mid a_{1/2} - a_{3/2} \mid^2 \text{ with } \frac{\Delta R}{R} \approx 2\%$$

J. Schweizer - 2004

EXA2014 Sept 15-19

From Roy-Steiner equations:

$$a_{0}^{1/2} - a_{0}^{3/2} = 0.269 \pm 0.015 \rightarrow \tau = (3.7 \pm 0.4)10^{-15} s$$

$$|f \quad \frac{\Delta\Gamma}{\Gamma} = 20\% \quad \Rightarrow \quad \frac{\Delta|a_{1/2} - a_{3/2}|}{|a_{1/2} - a_{3/2}|} = 10\%$$
ev (SINP)
$$\pi K \text{ atom lifetime and } \pi K \text{ scattering length} \qquad EXA204. Sept. 15:19 \qquad 12/1$$

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

Method of $\pi^+\pi^-$ and πK atom observation and investigation

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EX A 2014, Sept. 15-19

< □ > < /□ >

Method of and πK atom observation and investigation

Coulomb pairs and atoms

For the charged pairs from the short-lived sources and small relative momentum Q there is strong Coulomb interaction in the final state. This interaction increases the production yield of the free pairs with Q decreasing and creates atoms.

There is precise ratio between the number of produced Coulomb pairs (N_c) with small Q and the number of atoms (N_A) produced simultaneously with

these Coulomb pairs:

$$N_{A} = K(Q_{0}) \cdot N_{C} \ (Q \leq Q_{0}), \ \frac{\delta K(Q_{0})}{K(Q_{0})} \leq 10^{-2}$$

$$n_{A} \text{ - atomic pairs number, } P_{br} = \frac{n_{A}}{N_{A}}$$

$$(\Box \succ \langle \Box \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi \land \langle \Xi \rangle \land \langle \Xi \land \langle \Xi$$

EXA2014 Sept 15-19

Break-up probability

Solution of the transport equations provides one-to-one dependence of the measured break-up probability (P_{br}) on pionium lifetime τ

Break-up probability

Solution of the transport equations provides one-to-one dependence of the measured break-up probability (P_{br}) on πK atom lifetime for Nickel target with thicknesses $108\mu m$ and $98\mu m$

DIRAC setup

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EXA2014, Sept. 15-19

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Experimental setup

1 Target station with Ni foil; 2 First shielding; 3 Micro Drift Chambers; 4 Scintillating Fiber Detector; 5 Ionization Hodoscope; 6 Second Shielding; 7 Vacuum Tube; 8 Spectrometer Magnet; 9 Vacuum Chamber; 10 Drift Chambers; 11 Vertical Hodoscope; 12 Horizontal Hodoscope; 13 Aerogel Čerenkov; 14 Heavy Gas Čerenkov; 15 Nitrogen Čerenkov; 16 Preshower; 17 Muon Detector

Experimental conditions

SFD					
Coordinate precis	ion	$\sigma_X = 60 \mu m$		$\sigma_{Y} = 60 \mu m$	$\sigma_W = 120 \mu m$
Time precision	1	$\sigma_X^t = 380 ps$		$\sigma_Y^t = 512 ps$	$\sigma_W^t = 522 ps$
DC			VH		
Coordinate	$\sigma =$	= 85µ <i>m</i>		ime precision	$\sigma = 100 ps$

Spectrometer				
Relative resolution on the particle momentum in L.S. $3 \cdot 10^{-3}$				
Precision on Q-projections $\sigma_{Q_X} = \sigma_{Q_Y} = 0.5 MeV/c$		$\sigma_{Q_L} = 0.5 MeV/c (\pi\pi)$		
$\sigma_{Q_L} = 0.9 MeV/c (\pi K)$				

Trigger efficiency 98%	for pairs with	$Q_L < 28 \; MeV/c$
		$Q_X < 6 \; MeV/c$
		$Q_Y < 4 MeV/c$

EXA2014, Sept. 15-19

V . 1	Yaz	kov i	(SI	N	Р

Status of πK atom investigation

< 口 > < 同 >

Background suppression for $K^+\pi^-$

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EXA2014, Sept. 15-19

< □ > < /□ >

Background suppression for $\pi^+ K^-$

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EX A 2014, Sept. 15-19

< 口 > < 同 >

π^+K^- atoms - run 2008-2010

Run 2008-2010, statistics with low and medium background (2/3 of all statistics). Point-like production for all particles.

$K^+\pi^-$ atoms - run 2008-2010

Run 2008-2010, statistics with low and medium background (2/3 of all statistics). Point-like production for all particles.

EXA2014 Sept 15-19 25 / 1

Break-up probability of πK atoms

Year	N _A	n _A	P _{br}
	$K^+\pi^-$	over Q_T , Q_T	\mathcal{L}
2008	132 ± 16	14 ± 19	0.11 ± 0.15
2009	169 ± 24	33 ± 26	0.20 ± 0.17
2010	164 ± 23	49 ± 26	0.30 ± 0.19
All	465 ± 37	96 ± 41	0.21 ± 0.10
	$\pi^+ K^-$	over Q_T , (\mathcal{Q}_L
2008	51 ± 11	21 ± 13	0.41 ± 0.33
2009	78 ± 13	26 ± 16	0.34 ± 0.24
2010	60 ± 12	35 ± 16	0.58 ± 0.36
All	188 ± 21	82 ± 26	0.44 ± 0.18

$$n_A^{K^+\pi^-} + n_A^{\pi^+K^-} = 178 \pm 49$$

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

<ロト < (アト < 三ト < 三ト 3 gth EXA2014, Sept. 15-19

Systematic errors

Systematic errors in P_{br} common to all data collected from 2008 to 2010

Sources of systematic errors	$\sigma^{syst}_{Q_L,Q_T}$	$\sigma_{Q_L}^{syst}$
Uncertainty in correction on Λ -width	0.0039	0.0071
Uncertainty of multiple scattering in the Nickel target	0.0032	0.00054
Accuracy of SFD detector response simulation	0.00075	0.00029
Correction of Coulomb correlation function on finite size of production region	0.000058	0.000058
Uncertainty in a dependence ${\cal P}_{\it br}(au)$	0.0050	0.0050
Accuracy of a target thickness measurement	0.00030	< 0.00030

イロト イロト イヨト イ

Systematic errors

Systematic errors in P_{br} specific to the data samples collected in 2008, 2009 and 2010

Year	$\sigma^{syst}_{\pi K}$	σ^{syst}_{backgr}	
$K^+\pi^-$ over $Q_{\mathcal{T}},Q_L$			
2008	0.0028	0.0015	
2009	0.0044	0.0025	
2010	0.0036	0.0022	
K	$^+\pi^-$ over	QL	
2008	0.0030	0.0028	
2009	0.0053	0.0044	
2010	0.0046	0.0036	
$\pi^+ k$	(- over G	P_T, Q_L	
2008	0.0072	0.0067	
2009	0.0048	0.0028	
2010	0.0017	0.0043	
$\pi^+ K^-$ over Q_L			
2008	0.0093	0.0072	
2009	0.0047	0.0048	
2010	0.0021	0.0017	

э

イロト イロト イヨト イ

πK atom lifetime estimation

Analysis with Q_L, Q_T :

$$\tau = (2.5^{+3.0}_{-1.8}|_{stat} \stackrel{+0.3}{_{-0.1}}|_{syst}) fs = (2.5^{+3.0}_{-1.8}|_{tot}) fs$$
$$|a_0^-|M_{\pi} = 0.107^{+0.093}_{-0.035} = 0.11^{+0.09}_{-0.04}$$

Analysis with Q_L :

$$\tau = (2.4^{+5.4}_{-2.2}|_{stat} \, {}^{+0.5}_{-0.1}|_{syst}) \, fs = (2.4^{+5.5}_{-2.2}|_{tot}) \, fs$$

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EXA2014, Sept. 15-19 29 / 1

Increasing of statistic with 450 GeV/c proton beam

The yield of $\pi^+\pi^-, \pi^+K^-$ and $K^+\pi^-$ atoms W_A into DIRAC setup acceptance.

θ_{lab}	5.7°	5.7°	4°	2°	0°
E _p	24 GeV/c	450 GeV/c	450 GeV/c	450 GeV/c	450 GeV/c
		The yield of	$\pi^+\pi^-$ atoms		
W _A	0.11E-8	0.10E-7	0.18E-7	0.27E-7	0.29E-7
W^N_A	1	9.74	17.17	25.82	27.57
W_A/W_π	0.70E-7	0.23E-6	0.20E-6	0.83E-7	0.15E-7
$(W_A/W_\pi)^N$	1	3.32	2.90	1.20	0.21
		The yield of	$\pi^+ K^-$ atoms		
W _A	0.26E-10	0.20E-9	0.93E-9	0.23E-8	0.25E-8
W^N_A	1	7.48	35.41	86.85	95.99
W_A/W_{π}	0.17E-8	0.44E-8	0.10E-7	0.70E-8	0.13E-8
$(W_A/W_\pi)^N$	1	2.55	5.98	4.02	0.73
	The yield of $K^+\pi^-$ atoms				
WA	0.44E-10	0.21E-9	0.12E-8	0.30E-8	0.34E-8
W_A^N	1	4.71	27.17	68.73	78.15
W_A/W_π	0.29E-8	0.47E-8	0.13E-7	0.92E-8	0.17E-8
$(W_A/W_\pi)^N$	1.	1.61	4.59	3.18	0.59

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EXA2014, Sept. 15-19 30 / 1

Conclusion

- The analysis of πK pairs statistic with low and medium background, collected from 2008 to 2010, allows to evaluate the number of atomic πK pairs (178 ± 49) as well as the number of produced πK atoms (653 ± 42) and thus the breakup (ionisation) probability.
- Value of πK atom lifetime has been expracted to be $\tau = (2.5^{+3.0}_{-1.8}) fs$. It provides a measurement of the S-wave isospin-odd πK scattering length $|a_0^-| = (0.11^{+0.09}_{-0.04}) \cdot M_{\pi}^{-1}$.
- Using of statistic with higher background (1/3 of total statistic) and analysis of data collected with Pt target in 2007, gives possibility for further improvement of accuracy.

31 / 1

・ロト ・聞き ・ モー・

Thank you for your attention!

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EXA2014, Sept. 15-19

< □ > < A > >

Supplementary slides

V. Yazkov (SINP)

 πK atom lifetime and πK scattering length

EXA2014, Sept. 15-19

Experimental conditions

Primary proton beam	24 <i>GeV</i> / <i>c</i>
Beam intensity	$(10.5 \div 12) \cdot 10^{10}$ proton/spill
Single count of one IH plane	$(5\div 6)\cdot 10^6$ particle/spill
Spill duration	450 <i>ms</i>

Ni target								
Purity	99.98%							
Target thickness (year)	98 \pm 1 μ m (2008)	$108 \pm 1 \; \mu m \; (2009 - 2010)$						
Radiation thickness	$6.7 \cdot 10^{-3} X_0$	$7.4 \cdot 10^{-3} X_0$						
Probability of inelastic proton interaction	$6.4 \cdot 10^{-4}$	$7.1 \cdot 10^{-4}$						

V. Yazkov (SINP)

EXA2014, Sept. 15-19 34 / 1

э

イロト イロト イヨト イ

Experimental conditions

Secondary particles channel	5 <i>1</i> °		
(relative to the proton beam)	5.4		
Angular divergence in vertical	+10		
and horizontal planes	±1		
Solid angle	$1.2\cdot 10^{-3}$ sr		
Dipole magnet	$B_{max} = 1.65 T, BL = 2.2 Tm$		

Time resolution [ps]										
	VH	IH				SFD				
plane	1	1	2	3	4	Х	Y	W		
2008	112	713	728	718	798	379	508	518		
2010	113	907	987	997	1037	382	517	527		

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ くりゃ

Admixtures in distributions of $\pi^+ K^-$ and $\pi^- K^+$ pairs

 $\pi^- K^+$ $\pi^+ K^$ z Z 100 40 35 80 30 60 25 20 40 15 10 20 5 0 0 -0.25 -0.2 -0.15 0.05 0.1 0.15 0.2 -0.1 -0.05 0 0.05 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.25 0.1 0.15 0.2 0.25 x 10 ΔT [s] ΔT [s] x 10

EXA2014, Sept. 15-19 36 / 1

< □ > < /□ >

 πK atom lifetime and πK scattering length

V. Yazkov (SINP)