The FINUDA experiment: recent results

Alessandra Filippi INFN Torino, Italy

EXA2014 Conference, Vienna, September 15, 2014

Outline

• Introduction

- The FINUDA experiment at DAΦNE
- Free hyperon production in K⁻ absorption in (pp) vs (pn) pairs in nuclei
 - Study of K⁻(pp) absorption: (Λp) final state
 - Study of K⁻(pn) absorption: (Σ⁻p) final state (preliminary)
- Analysis method
 - data selection: hyperon + prompt particle final states identification
 - acceptance correction
 - spectra study and decomposition global fits
 - Models, basic hypotheses and add-ons
- Results
- Conclusions

FINUDA @DAΦNE: K⁻_{stop} on nuclei (A>4)

Momentum

$\Sigma^{\text{-}}$ signal identification quality

- $n\pi^+\pi^-$
- reject events with unphysical missing mass
- track fitting
- vertex selection
- Σ^{-} decay angle
- π⁺π⁻ production/decay kinematic constraints

PLB704 (2011), 474

Acceptance corrections: effects

- Simulations of three particles with flat momenta in the relevant kinematic range of the reaction: O(10⁹) events simulated
- Smooth but not flat multi-dim maps
- Event by event correction through a 9-dim matrix (per particle)
- Borders may be critical: cuts on particle momenta needed to minimize systematic errors

Acceptance corrections: comparison

p momentum (GeV/c)

ppπ⁻

npπ

• acceptance cuts: $p_p > 300 \text{ MeV/c}$ $p_{(pp\pi-)} > 300 \text{ MeV/c}$

- (almost) flat neutron geometrical acceptance
- smoother variation
- milder cuts are enough:
 p_p > 200 MeV/c

p_(npπ-) > 80 MeV/c

Spectral analysis approach

- Problem: how to determine the composition of spectra to understand physics and spot (possibly) new effects
- Several experimental distributions to be considered at the same time to track the most of the data features
 - 2D distributions difficult to use (recoiling nuclear system, moderate statistics)
- Experimental data to be modeled by known QF reactions leading to the same final state and/or set of uncorrelated particles
 - Physical backgrounds
 - Accidental feedthroughs
- Approach: binned maximum likelihood fits of sets of experimental histograms based on Montecarlo simulations of quasi-free reactions

The multidimensional fit

- Several experimental distributions are required to be fitted at the same time by the sum of many QF reactions, TFractionFitter based on Poisson statistics
 - (∧p)
 - 5 experimental distributions
 - ≥10 QF reactions In the model
 - (Σ⁻p)
 - 11 experimental distributions
 - \geq 15 QF reactions In the model
- Output from the fit: fraction of each background reaction
- Iterative procedure with additional hypotheses until a satisfactory data description is achieved

(Λ p) FINAL STATE ANALYSIS

Old vs new data taking

- 2003 data: all lighter targets together: $2x^{6}Li + 2x^{7}Li + 3x^{12}C$
- Different cuts applied on the data
- Different analysis approach
- Look for (K⁻pp) bound state confirmation

 $B = 115^{+6}_{-5} (stat)^{+3}_{-4} (sys) MeV$ $\Gamma = 67^{+14}_{-11} (stat)^{+2}_{-3} (sys) MeV$ FINUDA Coll., PRL 94(2005)212303

2006-2007: $2x^9Be+2x^6Li+2x^7Li$ same normalization no acceptance correctio angular cut: $\cos \theta_{\Lambda p} < -0.8$ mom. cuts for Λ , p: > 300 MeV/c consistent spectrum shapes

$K^{-}_{stop}A \rightarrow \Lambda pA'$ reaction: the models

- Several QF reactions are simulated (Fermi • mom. for nucleons, nucleon pairs and recoiling A'), subject to reconstruction through FINUDA acceptance + analysis chain
- Start hypothesis: A' assumed in its ground • state
- grouped according to phase space coverage •
- fits on acceptance corrected distributions
 - $K^{-}pp[A-pp]_{\alpha.s.} \rightarrow \Lambda p A'$
 - $K^{-}pp[A-pp]_{q.s.} \rightarrow \Sigma^{0}p A'$
 - $\label{eq:K-pp} \mathsf{K}^{\text{-}} \mathsf{pp}[\mathsf{A}\text{-}\mathsf{pp}]_{g.s.} \to \Sigma^{\text{+}} n \; \mathsf{A'} + \Sigma^{\text{+}} \Lambda \; \mathsf{C.R.}$
 - $\text{K-n}[\text{A-n}]_{\text{g.s.}} \xrightarrow{S^{-1}} \Sigma^0 \pi^0 \text{ A'} + \Sigma \Lambda \text{ C.R.}$
 - $K^{-}p[A-p]_{\alpha,s} \rightarrow \Sigma^{+}\pi^{-}A' + \Sigma \Lambda C.R.$
 - $\begin{array}{l} \mbox{K}^{-}\,pp[\mbox{A-pp}]_{g.s.} \rightarrow \Sigma^{0}p \mbox{ A'} + \Sigma\Lambda \mbox{ C.R.} \\ \mbox{K}^{-}\,pn[\mbox{A-pn}]_{g.s.} \rightarrow \Sigma^{-}p \mbox{ A'} + \Sigma\Lambda \mbox{ C.R.} \end{array}$

 - K⁻ppn[A-ppn]_{q,s.} → Λpn A"
 - $K^{-}pN[A-pn]_{g.s.} \rightarrow \Lambda N A' + N FSI$
 - $K^{-}pp[A-pp]_{q.s.} \rightarrow \Lambda p A' + \Lambda FSI$

MC arbitrary normalizations

⁹Be(K⁻_{stop},Λp)X global fit results: base hypothesis

- The sum of **11 QF background reactions** (standard set) explains ~90% of the experimental spectra: $\chi^2_{NDF} = 3.2$ not satisfactory: additional reactions needed
- The best fit cannot explain neither the (Λp) inv. mass excess at ~ 2300 MeV/c², nor the angular distribution for back-to-back angles

Add-on #1: excited/fragmented recoiling nucleus

- The kaon might be absorbed by a nucleon pair not on the nucleus surface, but inside the nucleus
 - The recoiling nucleus might be left in an excited state, and then fragment
 - The energy available for the (Yp) system could be lower
 - Sizeable energy difference in heavier nuclei (⁹Be vs ⁶Li)

Excited/fragmented recoiling nucleus: 9Be vs 6Li

- Sizeable improvement of ⁹Be data description when different recoiling configurations are added
- Same for heavier targets (¹³C, ¹⁶O)
- Not critical for ⁶Li since most of the excited/fragmented configurations are within the mm. resolution (~10 MeV/c²)

Add-on #2: test of the [K⁻pp] resonant hypothesis

- Additional term: resonant contribution (Breit-Wigner) of an intermediate [K⁻pp] system decaying at rest in Λp
- Mass? Width?
 - Discrete scan along a 2D-grid (thorough simulation for each grid node)
 - Best fit solution: (M $_{\Lambda p}$, $\Gamma_{\Lambda p}$) pair delivering the minimum likelihood- χ^2
 - The additional component is decisive to solve many of the fits' problems and improve the overall description

Global fits in all targets

- [K⁻pp] inclusion especially important for ⁶Li
 - Best fit solution corresponding to χ^2 minimum, over the grid values

	Μ _{Λp} (MeV/c²)	Г _{лр} (MeV)	R(10 ⁻⁴ /K _{stop})	χ^2_{ν}	S
⁶ Li	2290±9	79±15	8.5±0.7±1.6	2.4	5.0
⁷ Li	2292±12	88±18	3.9±0.3±0.3	2.5	4.6
⁹ Be	2288±19	70±35	$3.6\pm0.2\pm0.6$	1.7	2.7
¹³ C	2292±12	71±41	9.7±1.1±0.3	2.2	2.5
¹⁶ O	2312±18	93±29	5.0±0.5±0.3	1.6	3.6

As compared to PRL results (light tgt mixture):

- larger width (but within errors)
- higher mass (~40 MeV/c²)

(Σ·p) FINAL STATE ANALYSIS

Σ^{-} p spectra global fit – the model

Two classes of Quasi-Free reactions are being considered:

- reactions with (Σ -p) pairs in the final state, recoiling against a nucleus in its ground state
 - $K_{stop}^{-} AZ \rightarrow \Sigma_{p}^{-} P^{A-2}(Z-1)$
 - $K_{stop}^{-} {}^{A}Z \rightarrow \Sigma(1385)^{-}p {}^{A-2}(Z-1) \rightarrow \Sigma^{-}p {}^{\pi^{0}A-2}(Z-1)$
 - $K_{stop}^{-} AZ \rightarrow \Sigma^{-} p \pi^{0} A^{-2}(Z-1)$
 - $K_{stop}^{-} {}^{A}Z \rightarrow \Sigma^{-}p \pi^{+} {}^{A-2}(Z-2)$ (on pp pair)
 - $K_{stop}^{-} AZ \rightarrow \Sigma^{-} p^{A-2}(Z-1) + p$ rescattering
 - $K_{stop}^{-} AZ \rightarrow \Sigma_{pn}^{-} A^{-3}(Z-2)$ (on 3N or np pair in ³H substructure)
- reactions leading to (nπ⁻p) in the final state, leaking through the selection criteria and entering the Σ⁻mass window
 - $K^-_{stop} {}^{z}A \rightarrow \Sigma^+\pi^- {}^{A-1}(Z-1)$ (π^+/p misidentif.)
 - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}\pi^{0} {}^{A-1}(Z-1)$ (γ/n misidentif.)
 - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{+}\pi^{-} n {}^{A-2}(Z-1)$ (2N absorption)
 - $K_{stop}^{-} ZA \rightarrow \Lambda n^{A-2}(Z-1)$
 - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n {}^{A-2}(Z-1) \rightarrow \Lambda n\gamma {}^{A-2}(Z-1)$
 - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n {}^{A-2}(Z-1) \rightarrow \Lambda np {}^{A-3}(Z-2)$
 - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n {}^{A-2}(Z-1) \rightarrow \Lambda nn {}^{A-3}(Z-1)$
 - $K_{\text{stop}}^{-} {}^{Z}A \rightarrow \Sigma^{-}n {}^{A-2}Z \rightarrow \Lambda nn {}^{A-2}Z$
 - Incoherent bck contributions (rescatterings, ...)
- Σ Λ conv. react

$\Sigma^{-}p$ spectra global fit – the model

Two classes of Quasi-Free reactions are being considered:

- reactions with (Σ -p) pairs in the final state, recoiling against a nucleus in its ground state
 - $K_{stop}^{-} AZ \rightarrow \Sigma_{p}^{-} P^{A-2}(Z-1)$
 - $K_{stop}^{-} {}^{A}Z \rightarrow \Sigma(1385)^{-}p {}^{A-2}(Z-1) \rightarrow \Sigma^{-}p {}^{\pi^{0}A-2}(Z-1)$
 - $K_{stop}^{-} AZ \rightarrow \Sigma p \pi^{0} A^{-2}(Z-1)$
 - $K_{stop}^{-} {}^{A}Z \rightarrow \Sigma p \pi^{+} A^{-2}(Z-2)$ (on pp pair)
 - $K_{stop}^{-} AZ \rightarrow \Sigma^{-} p^{A-2}(Z-1) + p$ rescattering
 - $K_{stop}^{-} AZ \rightarrow \Sigma_{pn}^{-} A^{-3}(Z-2)$ (on 3N or np pair in ³H substructure)
- reactions leading to (nπ⁻p) in the final state, leaking through the selection criteria and entering the Σ⁻mass window

A conv. react

 \square

- $K^-_{\text{stop}} {}^{Z}A \rightarrow \Sigma^+ \pi^- {}^{A-1}(Z-1)$ (π^+/p misidentif.)
- $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}\pi^{0} {}^{A-1}(Z-1)$ (γ /n misidentif.)
- $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{+}\pi^{-} n {}^{A-2}(Z-1)$ (2N absorption)
- $K_{stop}^{-} ZA \rightarrow \Lambda n^{A-2}(Z-1)$
- $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n {}^{A-2}(Z-1) \rightarrow \Lambda n\gamma {}^{A-2}(Z-1)$
- $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n {}^{A-2}(Z-1) \rightarrow \Lambda np {}^{A-3}(Z-2)$
- $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n {}^{A-2}(Z-1) \rightarrow \Lambda nn {}^{A-3}(Z-1)$
- $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{-}n {}^{A-2}Z \rightarrow \Lambda nn {}^{A-2}Z$
- Incoherent bck contributions (rescatterings, ...)

Contaminating reactions: O(10⁻⁷/K_{stop}) only 1N absorption meaningful

⁶Li: fit with QF reactions only, $A_{g.s.} \chi_{R}^{2} = 1.42$

- 4 main reactions describe most of the spectra
- Not sensitive enough to separate $\Sigma^{-}p\pi^{0}$, $\Sigma(1385)^{-}p$ and $\Sigma^{-}p\pi^{-}$ contributions
- Sizeable contribution from Σ⁻pn final state Missing strength at 2150 and 2300 MeV/c²

22

⁹Be: fit with QF reactions, $A_{g.s.} \chi_{R}^{2} = 1.56$

- 3 main reactions describe most of the spectra
- pion momentum fit not satisfactory
- Sizeable contribution from Σ pn final state Missing strength at 2300 MeV/c²

⁷Li, ¹³C, ¹⁶O: fit with QF reactions only, A_{g.s.}

 $\Sigma^{-}p$ invariant mass

 π -p invariant mass

Add-on #1: QF reactions with recoiling fragmented nucleus

1st test: add components with a maximally fragmented system produced in Σ⁻p QF

⁶Li, ⁷Li: fit with QF + recoiling fragmented configuration

(meaningful contributions for lighter targets – heavier: too displaced)

- ⁶Li: QF reaction recoiling against a totally fragmented system ~10%, g.s.:13%
- ⁷Li: QF reaction recoiling against a totally fragmented system ~5%, g.s.:15%
- Clear improvement of the ($\Sigma^{-}p$) mass region at 2320 MeV/c², still imperfect for ($\pi^{-}p$)

Summary

- New technique for the description of experimental spectra: global fit with a (large) set of absorption reactions and 2-step processes (conversion, rescattering), with the recoiling system in different configurations
- Original purpose: study of the existence of a [K⁻pN] bound state:
 - K⁻[pp] → Λp
 - Additional contribution needed at 5σ level to provide a good fit of the ⁶Li data
 - Lower statistical significance for ⁹Be
 - − K⁻[pn] \rightarrow Σ⁻p
 - No evidence from the data calling a resonant structure at the same mass
 - The significance of an additional resonance is less than 3σ
 - Rather, some sort of cusp-like needed close to Λn threshold
 - Preliminary results, further inquiries underway
- Complementary observations/results which provide interesting additional hints on the absorption mechanism

BACKUP SLIDES

Emission rates evaluation

- Emission rates can be evaluated from the number of hyperons in their invariant mass spectrum (background corrected)
- Measured rates are in agreement with older (few) data
 - New measurements for A > 6

Comparison with the former result

• The applied angular cut does not affect Λp QF emission nor $\Sigma^0 p$

• A sizeable part of 1N and 2N reactions with Σ emission and $\Sigma \Lambda$ conversion, or reactions with FSI are antiselected

⁹Be

0.12

0.1

0.08

0.06

0.04

0.02

0

-1

-0.8

Yield [%/K _ 10.05

