First measurements of the antiproton-nucleus annihilation cross section at 125 keV

Luca Venturelli

for

H. Aghai-Khozani^{1;2}, D. Barna^{3;4}, M. Corradini^{5;6}, R. Hayano⁴, M. Hori^{1;4},
T. Kobayashi⁴, M.Leali^{5;6}, E. Lodi-Rizzini^{5;6}, V. Mascagna⁵, M. Prest^{7;8},
A. Soter¹, K. Todoroki⁴, E. Vallazza⁹, L. Venturelli^{5;6}, N. Zurlo^{5;6}

1 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany

2 Physics Department, CERN, 1211 Geneva 23, Switzerland

3 Wigner Institute for Particle and Nuclear Physics, H-1525 Budapest, Hungary

4 Department of Physics, University of Tokyo. Tokyo 113-0033, Japan

5 Dipartimento di Ingegneria dell'Informazione, Università di Brescia, I-25123 Brescia, Italy

6 Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, I-25123 Brescia, Italy

7 Università degli Studi dell'Insubria, I-22100 Como, Italy

p

8 Istituto Nazionale di Fisica Nucleare, Sezione di Milano Bicocca, I-20126 Milano, Italy

9 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy

ASACUSA Collaboration @ CERN-AD

Atomic Spectroscopy And Collisions Using Slow Antiprotons ~ 40 members Spokesman: R.S. Hayano, Tokyo University		Tokyo RIKEN Aarhus RMKI Debrecen CERN STEFAN MEYER INSTITUTE Brescia	MEXT, Japan RIKEN Danish natural science foundation, ISA OMFB TeT OTKA Austrian Academy of Sciences INFN
1) Spectroscopy of p He	HORI's talk		
2) Antihydrogen production and spectroscopy	MURTAGH's ta DIERMAIER's SAUERZOPF's	alk talk posters	
3) p̄ annihilation cross-section	> MASCAGNA's	poster	

ASACUSA Nuclear Program

$\overline{p}\text{-}A$ annihilations σ

• @ 5.3 MeV done (Ni, Sn, Pt)

• @ ~ 100 keV in progress

Physics motivations

• Cosmology: matter-antimatter asymmetry in the Universe

(One possibility is that antimatter is distributed non-homogeneously in the Universe within the so-called "islands" of antimatter . In the border region between matter and antimatter, the role of annihilation is important.)

- Search of resonances
- Determine the potential parameters
- Probe the external region of nucleus

(both potential models and phenomenological analyses state that the annihilations occur in a thin region placed just outside the nuclear volume: neutron/proton ratio or the extraction energy of the peripheral nucleons can be determined)

Saturation: σ_{ann} (pbarA) does not increase with A as naively expected

• ...the region below 0.5-1 MeV is completly unexplored

Antiproton Decelerator (AD) - CERN

AD is the only source of low-energy antiprotons

All-in-one machine: antiproton capture , deceleration & cooling

AD delivers to the experiments :

- 2-4 10⁷ antiprotons per bunch (150-300 ns length)
- 1 bunch/ 100 s
- Energy = 5.3 MeV (100 MeV/c)

Experiments (2014):

- ALPHA, ATRAP, ASACUSA, ACE, AEgIS, BASE

Further deceleration in ASACUSA

Technique of the annihilation $\boldsymbol{\sigma}$ measurement

counted by Vertex detector

by Rutherford annihilations

- Main problem:
- Antiproton beam from AD is pulsed :
 - a) several coincident annihilations saturate the acquisition;
 - b) overlapping of target signal and annihilations on the walls

To separate signal from background:

- Long & large vessel (L=1.7 m, ϕ =1.2 m)
- Beam chopper to reduce the pbar bunch length
- Slits along the beam-line to reduce beam halo
- Thick wall to screen detector from π -> μ ->e
- Ultra-thin targets

Why ultra-thin targets?

Not only to reduce the in-flight annihilations and to avoid pbar $E_{\rm K}$ degradation, but especially for ...

ultra thin targets needed

Experimental set-up

section at 125 keV - EXA 2014

Experimental set-up

L.Venturelli - Antiproton annihilation cross section at 125 keV - EXA 2014

Detectors

Antiproton annihilations detector:

DET1

DET2

Beam position monitor

Beam intensity monitor

L.Venturelli - Antiproton annihilation cross section at 125 keV - EXA 2014 DET1

L.Venturelli - Antiproton annihilation cross section at 125 keV - EXA 2014

Scintillator bar

DET2

two modules ($\sim 1 \times 1 \text{ m}^2 \text{ each}$),

modules

100 scintillator bars readout by MPPCs (multi-pixel photon counters)

Antiproton beam monitors

Beam position monitor

-Secondary emission electron detector
-Placed (& removable) at the target position

- Resolution 4 mm

p beam

- Cherenkov detector

L.Venturelli - Antiproton annihilation cross section at 125 keV - EXA 2014

Targets

Ultra-thin targets:

- carbon foil (70 nm)
- carbon foil (70 nm) + Pd (20 nm)
- carbon foil (70 nm) + Pt (5 nm)

Made @ TUM

Steel ring frame: $\Phi_{int} = 8 \text{ cm}$ $\Phi_{ext} = 13 \text{ cm}$

target parking vessel rotary-linear multi-motion

L.Venturelli - Antiproton annihilation cross section at 125 keV - EXA 2014

Targets measurements @ LNL

Rutherford Back Scattering measurement:

2 MeV Alpha scatterd at 165°; spot 1x1 mm^2

		nominal µg/cm^2	nominal 1E15 at/cm^2	measured 1E15at/cm^2	measured nm
C+Pd	Pd	24	135.8	139 (+- 4)	20.4 (p=21.45 g/cm^3)
	С	16	803	720 (+- 35)	71.7 (ρ=2 g/cm^3)

		nominal µg/cm^2	nominal 1E15 at/cm^2	measured 1E15 at/cm^2	measured nm
C+Pt	Pt	10.7	33	43.8 (+-3%)	6.62 (ρ=21.45g/cm^3)
	С	16	803	768 (+-5%)	76.5 (ρ=2 g/cm^3)

C target not measured (destroyed)

Measure thicknesses are consistent with the nominal values Good thickness uniformity (better than 5%)

Annihilations time

Annihilations time

Data from DET1

Data from DET2

section at 125 keV - EXA 2014

Data analysis

Beam intensity measurement

Cherenkov detector \rightarrow relative measurement of the pbar beam intensity

Cherenkov calibration by measuring the Coulomb-scattered antiprotons from the C+Pt target on a 2° ring \rightarrow absolute pbar beam intensity

Carbon target

Problems with bare-C target data

	Normalized prongs/bunch (DET1)		
C C+Pd C+Pt	7.23 ± 0.29 1.94 ± 0.15 1.70 ± 0.21	\leftarrow Too many in respect to the other	

- The carbon films had similar thicknesses (even if bare-C not measured)
- same results in different days and with different detectors (DET1 and DET2)

Why?

- Large beam halo on the bare-C frame is very unlikely (checked during runs)
- usual dust seems to not explain the effect
- bare-C target was contaminated by some material during its installation?

Upper limits on pbar-nucleus annihilation cross-sections @125 keV

In 2012 data for 3 targets:

C (C+Pd) (C+Pt)

...but bare-C target was unreliable

Can we extract annih. cross-sections only from (C+Pd) and (C+Pt) data?

Annihilation cross-section (σ)

$$\begin{cases} N_{events}^{Pt+C} = N_{pbar} \left(\sigma_{Pt} n_{Pt} + \sigma_{C} n_{C} \right) & \text{for (Pt+C) target} \\ N_{events}^{Pd+C} = N_{pbar} \left(\sigma_{Pd} n_{Pd} + \sigma_{C} n_{C} \right) & \text{for (Pd+C) target} \end{cases}$$

2 equations and 3 variables $(\sigma_{_{C}}, \sigma_{_{Pd}}, \sigma_{_{Pt}})$

It is possible to measure:

- relative
$$\sigma$$
: $\frac{\sigma_{Pd}}{\sigma_{C}}, \frac{\sigma_{Pt}}{\sigma_{C}}, \frac{\sigma_{Pt}}{\sigma_{Pd}}$

- (lower & upper) limits for $\,\,\sigma_{_{C}},\,\sigma_{_{Pd}},\,\sigma_{_{Pt}}$

Legenda:

$$N_{events}^{Pt+C}(N_{events}^{Pd+C}) = \# \text{ of in-flight annihilations for Pt+C (Pd+C) target}$$

 $N_{pbar} = \# \text{ of injected pbars}$

 $n_X = Surface number density for X element \leftarrow RBS measurement @ Legnaro (Italy) L.Venturelli - Antiproton annihilation cross section at 125 keV - EXA 2014$

(lower & upper) limits for $\sigma_{_{C}}, \sigma_{_{Pd}}, \sigma_{_{Pt}}$

more stringent (lower & upper) limits for $\sigma_{_{C}}, \sigma_{_{Pd}}, \sigma_{_{Pt}}$

In addition if we assume:

$$\sigma_{Pt} \geq \sigma_{Pd} \geq \sigma_{C}$$

we can limit the ranges

model (Black-disk + Coulomb focusing)

Model and experiment in agreement

section at 125 keV - EXA 2014

Conclusions

 \bullet Antiproton-nucleus σ_{ann} measurement is feasible at 100 keV with ultra-thin solid targets

- clear time separation between target signal and bkg annihilations on the vessel
- acceptable bck from π - μ -e decay and pbar beam halo

• Upper (and lower) limits of the antiproton σ_{ann} on C, Pd and Pt at 125 keV have been measured for the first time The results are consistent with the expected values from black-disk model with Coulomb focusing

 \bullet Antiproton absolute $\,\sigma_{_{ann}}\,$ can be measured in the 100 keV region for different targets at AD and at the future ELENA decelerator

• during the next 2 years (before ELENA) both pbar annihilation and elastic σ could be measured at 5 MeV in connection with the "antineutron puzzle".