Result of

the J-PARC E27 experiment

Yudai Ichikawa

Kyoto University/JAEA
International Conference on Exotic Atoms and Related Topics - EXA2014

Contents

> Introduction
> Kaonic nuclei, K-pp bound state
> J-PARC E27 experiments
$>$ Search for the K-pp bound state
$>\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right) \mathrm{X}$ reaction
$>$ Experimental set up
(K1.8 beam line + SKS + RCA)
> Coincidence measurement with RCA
> Analysis result
> Calibration
> Inclusive analysis (accepted to PTEP arXiv:1407.3051)
> Coincidence analysis
$>$ Summary

Introduction Kaonic nuclei

$>$ A bound state of antikaon and nucleus due to a strong interaction. It has a rich information such as a sub-threshold $\overline{\mathrm{K}} \mathrm{N}$ interaction and a behavior of the $\Lambda(1405)$ in many body systems.

K^{-}pp bound state

$\overline{\mathrm{K}} \mathrm{NN}$ (Total charge; $+1, \mathrm{I}=1 / 2$)
$>$ Expected to be the simplest kaonic nuclei.
Theoretical prediction of B.E. and Γ depend on the $\overline{\mathrm{K}} \mathrm{N}$ interaction and the calculation method.
Calculated $K^{-} p p$ binding energies B and widths Γ (in MeV).
A. Gal / Nuclear Physics A 914 (2013) 270-279

	Chiral, energy dependent			Non-chiral, static calculations			
	var. [7]	var. [8]	Fad. [9]	var. [10]	Fad [11]	Fad [12]	var. [13]
B	16	17-23	9-16	48	50-70	60-95	40-80
Γ	41	40-70	$34-46$	61	90-110	45-80	40-85
	[7] N. Barnea, [8] A. Doté, T. A. Doté, T [9] Y. Ikeda, H [10] T. Yamazali,	Z. Liverts, P Weise, Nu Weise, Phy T. Sato, Pro shi, Phys. Let	B 712 (2012) 132. 804 (2008) 197; 79 (2009) 014003 Phys. 124 (2010) 5 2002) 70 .	[11] N.V. Shevc N.V.Shevc [12] Y. Ikeda, T Y. Ikeda, T [13] S. Wycech, A	Gal, J. Mareš, Gal, J. Mareš, s. Rev. C 76 s. Rev. C 79 en, Phys. Rev.	Lett. 98 (2007) hys. Rev. C 03; 01. 9) 014001.	$14004 .$ 3

Past experiments for the $\mathrm{K}^{-} \mathrm{pp}$

FINUDA

DISTO

$$
p+p @ T p=2.85 \mathrm{GeV}
$$

Invariant mass of back-to-back $p+p \rightarrow X+K^{+}$(missing mass)
$X \rightarrow \Lambda+p$ (invariant mass)
Λ p pairs

$$
\begin{array}{l|l}
115_{-5}^{+6}(\text { stat } .)_{-4}^{+3}(\text { syst. }) \mathrm{MeV} & 103 \pm 3(\text { stat. }) \pm 5(\text { syst. }) \mathrm{MeV} \\
\hline 67_{-11}^{+14}(\text { stat. } .)_{-3}^{+2}(\text { syst. }) \mathrm{MeV} & 118 \pm 8(\text { stat. }) \pm 10(\text { syst. }) \mathrm{MeV}
\end{array}
$$

M.Agnello et al., PRL 94, 212303 (2005)
T.Yamazaki et al., PRL 104, 132502 (2010)

Comparison the B.E. and Г of the $\mathrm{K}^{-} \mathrm{pp}$

> B.E. and Γ strongly depend on the $\overline{\mathrm{K}} \mathrm{N}$ interaction.
It is difficult to reproduce the experimental values.

J-PARC E27 experiment ($\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{X}$ reaction at $1.69 \mathrm{GeV} / \mathrm{c}$)

$\mathrm{K}^{-} \mathrm{pp}$ is produced via a $\Lambda(1405)$ doorway.

$\left(\rightarrow\right.$ quasi free $\left.\Lambda^{*}\right)$
 K 1.8 beam line

$\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right) \mathrm{X}$ reaction $\left(\mathrm{P}_{\pi}=1.69 \mathrm{GeV} / \mathrm{c}\right)$

Simulated inclusive missing mass spectrum of quasi-free hyperon productions.
There are a lot of background process in this reaction.

$\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right) \mathrm{X}$ reaction $\left(\mathrm{P}_{\pi}=1.69 \mathrm{GeV} / \mathrm{c}\right)$

Simulated inclusive missing mass spectrum of quasi-free hyperon productions.
There are a lot of background process in this reaction.

B.G.

K-pp signal will be hidden by other QF processes at inclusive spectrum.
\rightarrow Coincidence measurement.

RCA for B.G. suppression

> 6 units, 5 layers $(1+2+2+5+2 \mathrm{~cm})$ of plastic scintillator.
> Detect the proton(s) from the $\mathrm{K}^{-} \mathrm{pp}$ decay.

$$
\begin{aligned}
\mathrm{K}^{-} \mathrm{pp} & \rightarrow \Lambda \mathrm{p} \rightarrow \mathrm{p} \pi^{-} \mathrm{p} \\
& \rightarrow \Sigma^{0} \mathrm{p} \rightarrow \mathrm{p} \pi^{-} \gamma \mathrm{p} \\
& \rightarrow \mathrm{Y} \pi \mathrm{p} \rightarrow \mathrm{p} \pi \mathrm{p}+(\text { etc. })
\end{aligned}
$$

Momentum coverage for proton: about $300 \sim 800 \mathrm{MeV} / \mathrm{c}$

Geometrical coverage $\sim 26 \%$
QF(B.G.):

$$
\boldsymbol{\pi}^{+} \text {" } \mathrm{n} " \rightarrow \boldsymbol{\Lambda} \boldsymbol{\pi}^{0} \mathbf{K}^{+} \rightarrow \mathrm{p} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{0} \mathbf{K}^{+}
$$

(proton spectator)

RCA for B.G. suppression

>6 units, 5 layers $(1+2+2+5+2 \mathrm{~cm})$ of plastic scintillator.
$>$ Detect the proton(s) from the $\mathrm{K}^{-} \mathrm{pp}$ decay.

$$
\begin{aligned}
\mathrm{K}^{-} \mathrm{pp} & \rightarrow \Lambda \mathrm{p} \rightarrow \mathrm{p} \pi^{-} \mathrm{p} ; \\
& \rightarrow \Sigma^{0} \mathrm{p} \rightarrow \mathrm{p} \pi^{-} \gamma \mathrm{p} ; \\
& \rightarrow \mathrm{Y} \pi \mathrm{p}
\end{aligned}
$$

Momentum coverage for proton: about $300 \sim 800 \mathrm{MeV} / \mathrm{c}$
Geometrical coverage $\sim 26 \%$

RCA for B.G. suppression

>6 units, 5 layers $(1+2+2+5+2 \mathrm{~cm})$ of plastic scintillator.
$>$ Detect the proton(s) from the $\mathrm{K}^{-} \mathrm{pp}$ decay.

$$
\begin{aligned}
\mathrm{K}^{-} \mathrm{pp} & \rightarrow \Lambda \mathrm{p} \rightarrow \mathrm{p} \pi^{-} \mathrm{p} ; \\
& \rightarrow \Sigma^{0} \mathrm{p} \rightarrow \mathrm{p} \pi^{-} \gamma \mathrm{p} ; \\
& \rightarrow \mathrm{Y} \pi \mathrm{p}
\end{aligned}
$$

\rightarrow We suppress the quasi-free B.G. by tagging a proton. \rightarrow More strongly suppress by tagging two protons.

Analysis result

Spectrometer performance (Calibration) $\mathrm{p}\left(\pi^{+}, \mathrm{K}^{+}\right) \Sigma^{+}$at $1.58 \mathrm{GeV} / \mathrm{c}$

 The K^{+}momentum is same region of the $\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right) \mathrm{K}-\mathrm{pp}$ reaction.- Missing mass resolution of Σ^{+} $\Delta \mathrm{M}=2.8 \pm 0.1 \mathrm{MeV} / \mathrm{c}^{2}(\mathrm{FWHM})$

- Missing mass resolution of the $\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right) \mathrm{X}$ reaction
- $\mathrm{X}=\mathrm{K}^{-p p}(\mathrm{~B} . \mathrm{E}=100 \mathrm{MeV})$
$\Delta \mathrm{M}=2.7 \pm 0.1 \mathrm{MeV} / \mathrm{c}^{2}(\mathrm{FWHM})$
- $\mathrm{X}=\Sigma \mathrm{N} \operatorname{cusp}\left(2.13 \mathrm{GeV} / \mathrm{c}^{2}\right)$
$\Delta \mathrm{M}=3.2 \pm 0.2 \mathrm{MeV} / \mathrm{c}^{2}(\mathrm{FWHM})$

$\mathrm{p}\left(\pi^{+}, \mathrm{K}^{+}\right)$at $1.69 \mathrm{GeV} / \mathrm{c}$

$\mathrm{M}=1381.1 \pm 3.6 \mathrm{MeV} / \mathrm{c}^{2}$
$\Gamma=42 \pm 13 \mathrm{MeV}$
PDG: $\mathrm{M}=1382.8 \pm 0.35 \mathrm{MeV} / \mathrm{c}^{2}$,

$$
\Gamma=36.07 \pm 0.7 \mathrm{MeV}
$$

$\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right)$at $1.69 \mathrm{GeV} / \mathrm{c}$

- There are a lot of B.G (quasi-free hyperon production).
\rightarrow It is difficult to identify the $\mathrm{K}^{-} \mathrm{pp}$ from inclusive spectrum.
- The overall structure was understood with a simulation. However, there are two peculiar deviations.
- $\quad \Sigma \mathrm{N}$ cusp ($\sim 2.13 \mathrm{GeV} / \mathrm{c}^{2}$) and Y^{*} peak postion

Quasi-free B.G.
$-\Lambda, \Sigma^{+/ 0}$,

- $\mathrm{Y}^{*}: \Lambda(1405)$, $\Sigma(1385)^{+/ 0}$,
$-\Lambda \pi, \Sigma \pi$

$\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right)$at $1.69 \mathrm{GeV} / \mathrm{c}$

Y* peak; data $=2400.6 \pm 0.5$ (stat.) ± 0.6 (syst.) $\mathrm{MeV} / \mathrm{c}^{2}$

$$
\begin{aligned}
\operatorname{sim} & =2433.0_{-1.6}^{+2.8} \text { (syst.) } \mathrm{MeV} / \mathrm{c}^{2} \\
" \text { shift" } & =-32.4 \pm 0.5 \text { (stat.) }{ }_{-1.7}^{+2.9} \text { (syst.) } \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

Quasi-free B.G.
$-\Lambda, \Sigma^{+/ 0}$,

- $\mathrm{Y}^{*}: \Lambda(1405)$,
$\Sigma(1385)^{+/ 0}$,
$-\Lambda \pi, \Sigma \pi$

$\mathrm{d}\left(\gamma, \mathrm{K}^{+} \pi^{-}\right) \mathrm{X}$ reaction at $\mathrm{E}_{\gamma}=1.5-2.4 \mathrm{GeV}$

- Spring-8 LEPS
A. O. Tokiyasu et al., Phys. Lett. B 728C, 616-621 (2014).

Peak shift was not observed in this reaction.

$\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right)$at $1.69 \mathrm{GeV} / \mathrm{c}$

$>$ Forward scattering angle $\left(\boldsymbol{\theta}_{\mathbf{p i K}(\mathbf{L a b})}=2-8^{\circ}\right)$ was selected.
$>$ A cusp at $\Sigma \mathrm{N}$ threshold is prominent in the figure.
$>$ The intermediate $\Sigma \mathrm{N}$ states should be dominantly ${ }^{3} \mathrm{~S}_{1}$, leading to ${ }^{3} \mathrm{~S}_{1}$ and ${ }^{3} \mathrm{D}_{1}$ for the final $\Lambda \mathrm{N}$ system.

$$
\left\{\begin{array}{l}
M 0=2130.5 \pm 0.4(\text { stat }) \pm 0.9(\text { sys })\left[M e V / c^{2}\right] \\
\Gamma=5.3_{-1.2}^{+1.4}(\text { stat })_{-0.3}^{+0.6}(\text { sys })[\mathrm{MeV}]
\end{array}\right.
$$

H. Machner et al., NPA 901, 65 (2013)

Previous measurement of $\Sigma \mathrm{N}$ cusp

H. Machner et al., NPA 901, 65 (2013)

Previous measurement of $\Sigma \mathrm{N}$ cusp

Further detailed studies including the present data would reveal the information on the $\Sigma \mathrm{N}-\Lambda \mathrm{N}$ coupling strength and pole position.

Coincidence analysis result

PID performance of RCA

> Emitted proton is selected by RCA.
> Proton is well separated from pion

Cut parameter

- stop layer
- $1 / \beta$
- PID function (dE/dx)

1 proton coincidence analysis

> RC Seg2, 5 are almost free from QF backgrounds.
Excess due to $\Sigma \mathrm{N}$ cusp is clearly observed $\sim 2.13 \mathrm{GeV} / \mathrm{c}^{2}$.
Broad Enhancement is observed around $2.3 \mathrm{GeV} / \mathrm{c}^{2}$.

2 proton coincidence analysis

>2 protons coincidence spectrums show the same tendency as 1 proton coincidence spectrum.
$>$ We distinguish the 3 regions at the missing mass spectrum.
(1) $M M<2.22 \mathrm{GeV}$,
Cusp region
Inclusive

(2) $2.22<\mathbf{M M}<2.35 \mathrm{GeV}$,
 K-pp region
 (3) $\mathrm{MM}>2.35 \mathrm{GeV}$
 Y* region

2 proton coincidence analysis

>2 protons coincidence spectrums show the same tendency as 1 proton coincidence spectrum.
$>$ We distinguish the 3 regions at the missing mass spectrum.
(1) $M M<2.22 \mathrm{GeV}$,
Cusp region
Inclusive

(2) $2.22<\mathrm{MM}<2.35 \mathrm{GeV}$,
 K-pp region
 (3) $\mathrm{MM}>2.35 \mathrm{GeV}$
 Y* region

Final state of X ($2 p$ coin events).

Hyperon masses are reconstructed in 2 p coincidence events.

$$
\begin{aligned}
& \pi^{+}+\mathrm{d} \rightarrow \mathrm{~K}^{+}+\mathrm{X}, \\
& \mathrm{X} \rightarrow \mathrm{H}_{Y}+\mathrm{p}, \mathrm{H}_{Y} \rightarrow \pi+\mathrm{p}(+\ldots) \\
& ※ \mathrm{M}_{\mathrm{HY}}{ }^{2}=\left(\mathrm{E}_{\pi}+\mathrm{M}_{\mathrm{d}}-\mathrm{E}_{\mathrm{K}}-\mathrm{E}_{\mathrm{p}}\right)^{2}-\left(\mathrm{p}_{\pi}-\mathrm{p}_{\mathrm{K}}-\mathrm{p}_{\mathrm{p}}\right)^{2}
\end{aligned}
$$

Black: Data

$$
\left(H_{Y}=\Lambda\right): X \rightarrow \Lambda p
$$

$$
\left(\mathrm{H}_{\mathrm{Y}}=\Sigma^{0}\right): \mathbf{X} \rightarrow \Sigma^{0} p
$$

$$
\left(\mathrm{H}_{\mathrm{Y}}=\mathbf{Y} \pi\right): \mathbf{X} \rightarrow \mathbf{Y} \pi \mathbf{p}
$$

Blue: Sum

Final state of X ($2 p$ coin events).

Black: Data

$$
\left(\mathbf{H}_{\mathrm{Y}}=\Lambda\right): \mathbf{X} \rightarrow \Lambda \mathbf{p}
$$

$$
\left(\mathbf{H}_{\mathrm{y}}=\Sigma^{0}\right): \mathbf{X} \rightarrow \Sigma^{0} \mathrm{p}
$$

$$
\left(\mathrm{H}_{\mathrm{Y}}=\mathbf{Y} \pi\right): \mathbf{X} \rightarrow \mathbf{Y} \pi \mathrm{p}
$$

Blue: Sum

$<{ }_{0.05}$ Detection efficiencies of $2 \mathrm{p}>$

$\Sigma \mathrm{N}$ cusp of the 2 p coincidence events

> The $\Sigma \mathrm{N}$ cusp structure was observed in the inclusive spectrum.
$>$ This structure is also observed in the 2 protons coincidence spectrum in the $\Lambda \mathrm{p}$ final state for the forward scattering angle $\left(\theta_{\mathrm{piK}(\mathrm{Lab})}=2-8^{\circ}\right)$.
$>$ The peak position and width are consistent with inclusive one.
$<2 \mathrm{p}$ coincidence analysis result $>$

<Inclusive analysis result>

$$
\begin{aligned}
& M 0=2130.5 \pm 0.4(\text { stat }) \pm 0.9(s y s)\left[\mathrm{MeV} / \mathrm{c}^{2}\right] \\
& \left.\Gamma=5.3_{-1.2}^{1+4} \text { (stat }\right)_{-0.3}^{+0.6}(\mathrm{sys})[\mathrm{MeV}] \\
& d \bar{\sigma} / d \Omega=10.7 \pm 1.7 \mu \mathrm{~b} / \mathrm{sr}
\end{aligned}
$$

"K-pp"-like structure

> The broad structure around $2.26 \mathrm{GeV} / \mathrm{c}^{2}$ have been observed in the Σ^{0} p final state events.
$>$ We fitted with a Lorentzian function smeared with the resolution.
$>\mathrm{M}_{0} \sim 2260 \mathrm{MeV} / \mathrm{c}^{2}$ (B.E. $\sim 110 \mathrm{MeV}$)
> This distribution can reproduce the 1 p coincidence probability spectrum (pink). Blue and red lines show the flat component and summed one.
Differential cross section of
$\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{X}, \mathrm{X} \rightarrow \Sigma^{0} \mathrm{p}$ process

1 p coincidence probability

Summary

- The inclusive missing-mass spectra of the $\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction at $1.69 \mathrm{GeV} / \mathrm{c}$ for the first time.
The overall structure was understood with a simple quasifree picture. However, there are two peculiar deviations.
- The centroid of the broad bump structure in Y^{*} region was shifted to low mass side, by -32.4 ± 0.5 (stat.) ${ }_{-1.7}^{2.9}$ (syst.) $\mathrm{MeV} / \mathrm{c}^{2}$.
- We observed the $\Sigma \mathrm{N}$ cusp, the peak position is consistent with previous data.
- The double differential cross section of each final state was estimated from $2 p$ coincidence events.
- The peak position and the width of the $\Sigma \mathrm{N}$ cusp was consistent with inclusive one within the error.
- We have observed a clear bump structure which corresponds to "K-pp"-like structure in Σ^{0} p final state events.
The peak position is about $2260 \mathrm{MeV} / \mathrm{c}^{2}\left(\mathrm{~B}_{\mathrm{Kpp}} \sim 110 \mathrm{MeV}\right)$.

J-PARC E27 Collaboration

T. Nagae, H. C. Bhang, S. Bufalino, H. Ekawa, P. Evtoukhovitch,
A. Feliciello, H. Fujioka, S. Hasegawa, S. Hayakawa, R. Honda,
K. Hosomi, Y. Ichikawa, K. Imai, S. Ishimoto, C. W. Joo,
S. Kanatsuki, R. Kiuchi, T. Koike, H. Kumawat, Y. Matsumoto,
K. Miwa, M. Moritsu, M. Naruki, M. Niiyama, Y. Nozawa, R. Ota,
A. Sakaguchi, H. Sako, V. Samoilov, S. Sato, K. Shirotori,
H. Sugimura, S. Suzuki, T. Takahashi, T. N. Takahashi, H.

Tamura, T. Tanaka, K. Tanida, A. O. Tokiyasu, Z. Tsamalaidze, B. J. Roy, M. Ukai, T. O. Yamamoto and S. B. Yang

Back up

Simulation for the quasi-free processes

$$
\text { e.g.; } \pi^{+} \mathrm{d} \rightarrow \mathrm{~K}^{+} \Lambda\left(\mathrm{p}_{\mathrm{s}}\right)
$$

The mass of nucleon (Spectator model)

- Spectator nucleon
- On-shell
- Participant nucleon
- Off-shell

$$
M_{p}^{* 2}=\left(M_{d}-\sqrt{M_{s}^{2}+p_{F}^{2}}\right)^{2}-p_{F}^{2}
$$

In the $\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction, there are lot of possible quasi-free reactions

$$
\begin{gathered}
\pi^{+}+" \mathrm{n} " \rightarrow \mathrm{~K}^{+}+\Lambda, \\
\pi^{+}+" \mathrm{n} " \rightarrow \mathrm{~K}^{+}+\Sigma^{0} ; \pi^{+}+" \mathrm{p} " \rightarrow \mathrm{~K}^{+}+\Sigma^{+}, \\
\pi^{+}+" \mathrm{n} " \rightarrow \mathrm{~K}^{+}+\Lambda(1405), \\
\pi^{+}+" \mathrm{n} " \rightarrow \mathrm{~K}^{+}+\Sigma(1385)^{0} ; \pi^{+}+" \mathrm{p} " \rightarrow \mathrm{~K}^{+}+\Sigma(1385)^{+}, \\
\pi^{+}+" \mathrm{~N} " \rightarrow \mathrm{~K}^{+}+\Lambda+\pi ; \pi^{+}+" \mathrm{~N}^{\prime \prime} \rightarrow \mathrm{K}^{+}+\Sigma+\pi
\end{gathered}
$$

Simulation for the quasi-free processes

$$
\text { e.g.; } \pi^{+} d \rightarrow K^{+} \Lambda\left(p_{s}\right)
$$

The mass of nucleon (Spectator model)

- Spectator nucleon
- On-shell
- Participant nucleon
- Off-shell
$M_{p}^{* 2}=\left(M_{d}-\sqrt{M_{s}^{2}+p_{F}^{2}}\right)^{2}-p_{F}^{2}$
Differential cross sections of elementary process such a $\pi^{+} \mathrm{n} \rightarrow \mathrm{K}^{+} \Lambda$ are used bubble chamber data $\left(\pi^{-} \mathrm{p} \rightarrow \mathrm{K}^{0} \Lambda\right)$.
The kinematics of π^{+}"n" $\rightarrow \mathrm{K}^{+} \Lambda$ is calculated.

Acceptance of $\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right) \mathrm{X}$ reaction.

The region of $\mathrm{MM}_{\mathrm{d}}=2.16{ }^{\sim} 2.47 \mathrm{GeV} / \mathrm{c}^{2}$ has a flat acceptance.

Summary of previous data

2 B.W fitting result

2 B.W fitting summary

Comparison of the peak position

The peak position is consistent with other data.

$\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{X}$ at $1.4 \mathrm{GeV} / \mathrm{c}$ @Saclay

Table 2

Mass and width (FWHM) of H_{1}^{+}Breit-Wigner curves (b) fitted on corresponding samples (see text) with a quality equal to x^{2} / N

	$P(\mathrm{GeV} / c)$	$M\left(\mathrm{MeV} / c^{2}\right)$	$\Gamma(\mathrm{MeV} / \mathrm{c})$	χ^{2} / N
$\mathrm{~K}^{-} \mathrm{d} \rightarrow \pi^{-} \mathrm{H}_{1}^{+}$	1.4	$2129.8 \pm 0.2 \pm 2$	$\leqslant 12.9$	$265 / 96$
	1.06	$2124.6 \pm 0.8 \pm 2$	$\leqslant 7.9$	$133 / 96$
$\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{H}_{1}^{+}$	0.92	$2128.8 \pm 1.2 \pm 2$	$\leqslant 6.2$	$129 / 96$
	1.4	$2134.0 \pm 0.8 \pm 2$	$15.4 \pm 2.0 \pm 2$	$96 / 66$
	1.2	$2133.0 \pm 2.1 \pm 2$	$23.0 \pm 6.5 \pm 2$	$88 / 66$
	1.06	$2130.8 \pm 2.7 \pm 2$	$23.0 \pm 6.0 \pm 2$	$98 / 66$

The errors are respectively statistical and systematical. Those corresponding to the widths of reaction (1) are due to a 20% systematical error on the experimental resolution.

Fig. 6. The missing mass spectra for the reaction $\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{X}^{+}$at $1.4 \mathrm{GeV} / \mathrm{c}$, for different T multiplicities. Pigot et al., NPB 249 (1985) 172-188
The curves represent the fit with the contributions discussed in sect. 4 (see caption of fig. 5).

$\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{X}$ at $1.4 \mathrm{GeV} / \mathrm{c}$
 @Saclay

Fig. 3 (cont.)

Fig. 6. The missing mass spectra for the reaction $\pi^{+} \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{X}^{+}$at $1.4 \mathrm{GeV} / \mathrm{c}$, for different T multiplicities. Pigot et al., NPB 249 (1985) 172-188
The curves represent the fit with the contributions discussed in sect. 4 (see caption of fig. 5). The curves represent the fit with the contributions discussed in sect. 4 (see caption of fig. 5).

J-PARC E27 experiment

 $\mathrm{d}\left(\pi^{+}, \mathrm{K}^{+}\right) \mathrm{X}$ reaction $\left(\mathrm{P}_{\pi}=1.7 \mathrm{GeV} / \mathrm{c}\right)$K-pp is produced via a $\Lambda(1405)$ doorway.

$$
\begin{aligned}
\pi^{+}+\mathrm{n} \rightarrow \Lambda(1405) & +\mathrm{K}^{+} \\
\Lambda(1405)+\mathbf{p} & \rightarrow K^{-p p p}
\end{aligned}
$$

$$
\left(\rightarrow \text { quasi free } \Lambda^{*}\right)
$$

Y.Akaishi, T.Yamazaki, Phys. Rev. C 76045201 (2007)

RCA for B.G. suppression

Coincidence measurement!!

$$
\begin{aligned}
& \mathbf{d}\left(\boldsymbol{\pi}^{+}, \mathbf{K}^{+}\right) \mathbf{K} \mathbf{p p} \\
& \mathrm{K}-\mathrm{pp} \rightarrow \Lambda+\mathbf{p} \\
& \rightarrow \mathrm{p}+\pi^{-}
\end{aligned}
$$

(Range Counter Array)

Coincidence Study

Proton is identified with RCA.

$$
R p=(p \text { coincidence }) / \text { (Inclusive })
$$

Acceptance of 2proton (RCA)

