Result of the J-PARC E27 experiment

Yudai Ichikawa

Kyoto University/JAEA

International Conference on Exotic Atoms and Related Topics - EXA2014

Contents

Introduction

► Kaonic nuclei, K⁻pp bound state

➢ J-PARC E27 experiments

- Search for the K⁻pp bound state
- → $d(\pi^+, K^+)X$ reaction
- Experimental set up
 (K1.8 beam line + SKS + RCA)
- Coincidence measurement with RCA

Analysis result

- Calibration
- Inclusive analysis (accepted to PTEP arXiv:1407.3051)
- Coincidence analysis
- Summary

Introduction

Kaonic nuclei

- A bound state of antikaon and nucleus due to a strong interaction.
- > It has a rich information such as a sub-threshold $\overline{K}N$ interaction and a behavior of the $\Lambda(1405)$ in many body systems.

K⁻pp bound state

- $\overline{K}NN(Total charge; +1, I=1/2)$
- > Expected to be the simplest kaonic nuclei.
- > Theoretical prediction of B.E. and Γ depend on the \overline{KN} interaction and the calculation method.

	Calculated K	- pp binding	energies B	and widths	Γ (in MeV).
--	--------------	--------------	------------	------------	-------------

A. Gal / Nuclear Physics A 914 (2013) 270-279

	Chiral, energy dependent			Non-chiral, static calculations			
	var. [7]	var. [8]	Fad. [9]	var. [10]	Fad [11]	Fad [12]	var. [13]
В	16	17-23	9–16	48	50-70	60-95	40-80
Г	41	40-70	34-46	61	90-110	45-80	40-85
	[7] N. Barnea, A. C [8] A. Doté, T. Hyo A. Doté, T. Hyo	Gal, E.Z. Liverts, Phys. odo, W. Weise, Nucl. Ph odo, W. Weise, Phys. Re	Lett. B 712 (2012) 132. hys. A 804 (2008) 197; ev. C 79 (2009) 014003	[11] N.V. Shevchenko N.V. Shevchenko [12] Y. Ikeda, T. Sato	o, A. Gal, J. Mareš, Phys o, A. Gal, J. Mareš, J. Re o, Phys. Rev. C 76 (2007)	. Rev. Lett. 98 (2007) 08 vai, Phys. Rev. C 76 (20 035203:	2301; 07) 044004.
	[9] Y. Ikeda, H. Ka [10] T. Yamazaki, Y.	mano, T. Sato, Prog. Tl Akaishi, Phys. Lett. B	neor. Phys. 124 (2010) 533. 535 (2002) 70.	Y. Ikeda, T. Sato, Phys. Rev. C 79 (2009) 035201. [13] S. Wycech, A.M. Green, Phys. Rev. C 79 (2009) 014001.			3

Past experiments for the K⁻pp

		FINUDA	DISTO	
	reaction	Stopped K ⁻ absorption on ^{6, 7} Li+ ¹² C	p + p @ Tp=2.85GeV	
	method	Invariant mass of back-to-back Appairs	$p + p \rightarrow X + K^+$ (missing mass) $X \rightarrow \Lambda + p$ (invariant mass)	
	B.E.	$115_{-5}^{+6}(stat.)_{-4}^{+3}(syst.)$ MeV	$103 \pm 3(stat.) \pm 5(syst.)$ MeV	
	Width	$67_{-11}^{+14}(stat.)_{-3}^{+2}(syst.)$ MeV	$118 \pm 8(stat.) \pm 10(syst.)$ MeV	
	⁻²⁵⁰ -200 -150 30 25 -25 -250 -200 -150 -150 -25 -25 -200 -150 -25 -200 -150 -25 -250 -200 -150 -250 -200 -150 -250 -200 -150 -250 -200 -150 -25 -250 -500 -50	M.Agnello <i>et al.</i> , PRL 94, 212303 (2005) $K^{-+}p+p\sim 2.37 \text{GeV/c}^2$ MeV 100^{-50} 100	T.Yamazaki <i>et al.</i> , PRL 104, 132502 (2010) $K^+p+p\sim 2.37 \text{GeV/c}^2$ B (K ⁻ pp) [GeV] M = 2.267 (2) M = 2.267 (2) M = 2.267 (2) $K^-+p+p\sim 2.37 \text{GeV/c}^2$ M = 2.267 (2) M = 2.267 (2) $K^-+p+p\sim 2.37 \text{GeV/c}^2$	

Comparison the B.E. and Γ of the K⁻pp

- \triangleright B.E. and Γ strongly depend on the KN interaction.
- > It is difficult to reproduce the experimental values.

d(π^+ , K⁺)X reaction (P $_{\pi}$ =1.69GeV/c)

Simulated inclusive missing mass spectrum of quasi-free hyperon productions. There are a lot of background process in this reaction.

RCA for B.G. suppression

- > 6units, 5 layers (1+2+2+5+2cm) of plastic scintillator.
- > Detect the proton(s) from the K^-pp decay.
- TOF: 50cm, θ_{xz} : 39°–122°(L+R)
- Momentum coverage for proton: about $300 \sim 800 \text{MeV/c}$
- Geometrical coverage ~ 26%

 $K^{-}pp \rightarrow \Lambda p \rightarrow p\pi^{-}p;$

 $\rightarrow \Sigma^0 p \rightarrow p \pi^- \gamma p;$

 \rightarrow Y π p \rightarrow p π p+(etc.)

RCA for B.G. suppression

- > 6units, 5 layers (1+2+2+5+2cm) of plastic scintillator.
- Detect the proton(s) from the K⁻pp decay.
- TOF: 50cm, θ_{xz} : 39°–122°(L+R)
- Momentum coverage for proton: about $300 \sim 800 \text{MeV/c}$

 $K^{-}pp \rightarrow \Lambda p \rightarrow p\pi^{-}p;$

 $\rightarrow Y\pi p$

 $\rightarrow \Sigma^0 p \rightarrow p \pi^- \gamma p;$

Geometrical coverage ~ 26%

RCA for B.G. suppression

> 6units, 5 layers (1+2+2+5+2cm) of plastic scintillator.

 $K^{-}pp \rightarrow \Lambda p \rightarrow p\pi^{-}p;$

 $\rightarrow Y\pi p$

 $\rightarrow \Sigma^0 p \rightarrow p \pi^- \gamma p;$

- Detect the proton(s) from the K⁻pp decay.
- > TOF: 50cm, θ_{xz} : 39°–122°(L+R)

→We suppress the quasi-free B.G. by tagging a proton.
→More strongly suppress by tagging two protons.

Analysis result

Spectrometer performance (Calibration) $p(\pi^+, K^+)\Sigma^+$ at 1.58 GeV/c

The K⁺ momentum is same region of the $d(\pi^+, K^+)$ K⁻pp reaction.

- Missing mass resolution of Σ^+ $\Delta M = 2.8 \pm 0.1 \text{ MeV/c}^2(\text{FWHM})$
- Missing mass resolution of the d(π⁺, K⁺)X reaction
 - X = K-pp (B.E = 100MeV) $\Delta M = 2.7 \pm 0.1 \text{ MeV/c}^2$ (FWHM) • $X = \Sigma N \operatorname{cusp} (2.13 \text{ GeV/c}^2)$ $\Delta M = 3.2 \pm 0.2 \text{ MeV/c}^2$ (FWHM)

$d(\pi^+, K^+)$ at 1.69 GeV/c

- There are a lot of B.G (quasi-free hyperon production).
 →It is difficult to identify the K⁻pp from inclusive spectrum.
- The overall structure was understood with a simulation. However, there are two peculiar deviations.
 - $\Sigma N \operatorname{cusp}(\sim 2.13 \text{ GeV/c}^2)$ and Y* peak postion

$d(\pi^+, K^+)$ at 1.69 GeV/c

Y* peak; data = $2400.6 \pm 0.5(\text{stat.}) \pm 0.6(\text{syst.}) \text{ MeV/c}^2$ sim = $2433.0^{+2.8}_{-1.6}$ (syst.) MeV/c² "shift" = $-32.4 \pm 0.5(\text{stat.})^{+2.9}_{-1.7}$ (syst.) MeV/c²

d(γ , K⁺ π^{-})X reaction at E_{γ}=1.5–2.4 GeV

• Spring-8 LEPS

Peak shift was not observed in this reaction.

$d(\pi^+, K^+)$ at 1.69 GeV/c

- Forward scattering angle ($\theta_{piK(Lab)} = 2-8^\circ$) was selected.
- A cusp at Σ N threshold is prominent in the figure.
 - The intermediate ΣN states should be dominantly ${}^{3}S_{1}$, leading to ${}^{3}S_{1}$ and ${}^{3}D_{1}$ for the final ΛN system.

$$M0 = 2130.5 \pm 0.4(stat) \pm 0.9(sys)[MeV/c^2]$$

$$\Gamma = 5.3^{+1.4}_{-1.2} (stat)^{+0.6}_{-0.3} (sys) [MeV]$$

H. Machner et al., NPA 901, 65 (2013)

Further detailed studies including the present data would reveal the information on the Σ N- Λ N coupling strength and pole position.

Coincidence analysis result

PID performance of RCA

- > Emitted proton is selected by RCA.
- Proton is well separated from pion

proton coincidence analysis

- RC Seg2, 5 are almost free from QF backgrounds.
- Excess due to ΣN cusp is clearly observed ~ 2.13GeV/c².
- Broad Enhancement is observed around 2.3GeV/c².
 - A possible explanation of the observed structure is the K⁻pp.

2 proton coincidence analysis

- 2 protons coincidence spectrums show the same tendency as 1proton coincidence spectrum.
- We distinguish the 3 regions at the missing mass spectrum.
 ①MM<2.22GeV, ②2.22<MM<2.35GeV, ③MM>2.35GeV
 Cusp region K⁻pp region Y^{*} region

2 proton coincidence analysis

- 2 protons coincidence spectrums show the same tendency as 1proton coincidence spectrum.
- We distinguish the 3 regions at the missing mass spectrum.
 ①MM<2.22GeV, ②2.22<MM<2.35GeV, ③MM>2.35GeV
 Cusp region K⁻pp region Y* region

Final state of X (2p coin events).

Hyperon masses are reconstructed in 2p coincidence events.

$$\pi^{+} + d \rightarrow K^{+} + X,$$

$$X \rightarrow H_{Y} + p, H_{Y} \rightarrow \pi + p (+...)$$

$$\therefore M_{HY}^{2} = (E_{\pi} + M_{d} - E_{K} - E_{p})^{2} - (p_{\pi} - p_{K} - p_{p})^{2}$$

Black: Data $(H_Y = \Lambda): X \rightarrow \Lambda p$ $(H_Y = \Sigma^0): X \rightarrow \Sigma^0 p$ $(H_Y = Y\pi): X \rightarrow Y\pi p$ Blue: Sum

*M*_x: 2.35 - 2.47 GeV/*c*²

Σ N cusp of the 2p coincidence events

- > The Σ N cusp structure was observed in the inclusive spectrum.
- This structure is also observed in the 2protons coincidence spectrum in the Λp final state for the forward scattering angle ($\theta_{piK(Lab)} = 2 8^{\circ}$).
- > The peak position and width are consistent with inclusive one.

"K⁻pp"-like structure

- The broad structure around 2.26 GeV/c² have been observed in the $\Sigma^0 p$ final state events.
- > We fitted with a Lorentzian function smeared with the resolution.

> $M_0 \sim 2260 \text{ MeV/c}^2 (B.E.~110 \text{MeV})$

This distribution can reproduce the 1p coincidence probability spectrum (pink). Blue and red lines show the flat component and summed one.

Differential cross section of $V^+ V = V^- V^-$

1p coincidence probability

Summary

- The inclusive missing-mass spectra of the $d(\pi^+, K^+)$ reaction at 1.69 GeV/c for the first time.
- The overall structure was understood with a simple quasifree picture. However, there are two peculiar deviations.
 - The centroid of the broad bump structure in Y^{*} region was shifted to low mass side, by -32.4 ± 0.5 (stat.) $^{+2.9}_{-1.7}$ (syst.) MeV/c².
 - We observed the ΣN cusp, the peak position is consistent with previous data.
- The double differential cross section of each final state was estimated from 2p coincidence events.
 - The peak position and the width of the ΣN cusp was consistent with inclusive one within the error.
 - We have observed a clear bump structure which corresponds to "K-pp"-like structure in $\Sigma^0 p$ final state events. The peak position is about 2260 MeV/c² (B_{Kpp} ~110 MeV).

J-PARC E27 Collaboration

T. Nagae, H. C. Bhang, S. Bufalino, H. Ekawa, P. Evtoukhovitch,
A. Feliciello, H. Fujioka, S. Hasegawa, S. Hayakawa, R. Honda,
K. Hosomi, Y. Ichikawa, K. Imai, S. Ishimoto, C. W. Joo,
S. Kanatsuki, R. Kiuchi, T. Koike, H. Kumawat, Y. Matsumoto,
K. Miwa, M. Moritsu, M. Naruki, M. Niiyama, Y. Nozawa, R. Ota,
A. Sakaguchi, H. Sako, V. Samoilov, S. Sato, K. Shirotori,
H. Sugimura, S. Suzuki, T. Takahashi, T. N. Takahashi, H.
Tamura, T. Tanaka, K. Tanida, A. O. Tokiyasu, Z. Tsamalaidze,
B. J. Roy, M. Ukai, T. O. Yamamoto and S. B. Yang

In the d(π^+ , K⁺) reaction, there are lot of possible quasi-free reactions

$$\pi^{+} + \text{``n''} \rightarrow K^{+} + \Lambda,$$

$$\pi^{+} + \text{``n''} \rightarrow K^{+} + \Sigma^{0}; \ \pi^{+} + \text{``p''} \rightarrow K^{+} + \Sigma^{+},$$

$$\pi^{+} + \text{``n''} \to \mathrm{K}^{+} + \Lambda(1405),$$

$$\pi^{+} + \text{``n''} \to \mathrm{K}^{+} + \Sigma(1385)^{0}; \ \pi^{+} + \text{``p''} \to \mathrm{K}^{+} + \Sigma(1385)^{+},$$

 $\pi^+ + "N" \rightarrow K^+ + \Lambda + \pi; \quad \pi^+ + "N" \rightarrow K^+ + \Sigma + \pi$

Acceptance of $d(\pi^+, K^+)X$ reaction.

The region of $MM_d = 2.16 \sim 2.47 \text{ GeV/c}^2$ has a flat acceptance.

Summary of previous data

2 B.W fitting result

2 B.W fitting summary

38

Comparison of the peak position The peak position is consistent with other data. 2140 2135m₀ (MeV) 2130-٠ $\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \right) \end{array}\right) \right) \\ \left(\left(\begin{array}{c} \left(\end{array}\right) \end{array}\right) \end{array}\right) \\ \left(\left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\left(\begin{array}{c} \left(\end{array}\right) \right) \\ \left(\left(\end{array}\right) \end{array}\right) \\ \left(\left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\left(\begin{array}{c} \left(\end{array}\right) \right) \\ \left(\end{array}\right) \\ \left(\left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\begin{array}{c} \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\end{array}\right) \\ \left(\left(\end{array}\right) \\ \left(\left(\end{array}\right) \\ \left(\end{array}\right) \\ \left($ J-PARC E27 data. 39

$\pi^+ d \rightarrow K^+ X \text{ at } 1.4 \text{GeV/c}$ @Saclay

TABLE 2

Mass and width (FWHM) of H₁⁺ Breit-Wigner curves (b) fitted on corresponding samples (see text) with a quality equal to χ^2/N

	P(GeV/c)	$M (MeV/c^2)$	$\Gamma(\text{MeV}/c)$	χ^2/N
$K^-d \rightarrow \pi^-H_1^+$	1.4	2129.8±0.2±2	≤12.9	265/96
	1.06	$2124.6 \pm 0.8 \pm 2$	≤7.9	133/96
	0.92	$2128.8 \pm 1.2 \pm 2$	≤6.2	129/96
$\pi^+ d \rightarrow K^+ H_1^+$	1.4	$2134.0 \pm 0.8 \pm 2$	$15.4 \pm 2.0 \pm 2$	96/66
	1.2	$2133.0 \pm 2.1 \pm 2$	$23.0 \pm 6.5 \pm 2$	88/66
	1.06	$2130.8 \pm 2.7 \pm 2$	$23.0\pm6.0\pm2$	98/66

The errors are respectively statistical and systematical. Those corresponding to the widths of reaction (1) are due to a 20% systematical error on the experimental resolution.

Pigot et al., NPB 249 (1985) 172-188

Fig. 6. The missing mass spectra for the reaction $\pi^+ d \rightarrow K^+ X^+$ at 1.4 GeV/c, for different T multiplicities. The curves represent the fit with the contributions discussed in sect. 4 (see caption of fig. 5).

Pigot et al., NPB 249 (1985) 172-188

J-PARC E27 experiment

 $d(\pi^+, K^+)X$ reaction ($P_{\pi} = 1.7 \text{GeV/c}$)

K pp is produced via a $\Lambda(1405)$ doorway.

 $\pi^{+} + n \rightarrow \Lambda(1405) + K^{+}$ $\Lambda(1405) + p \rightarrow K^{-}pp$ $(\rightarrow quasi free \Lambda^{*})$

Coincidence Study

Proton is identified with RCA.

Rp = (p coincidence) / (Inclusive)

Acceptance of 2proton (RCA)

