

university of groningen

kvi - center for advanced radiation technology

Charming Physics using Matter-Antimatter Annihilations

Johan Messchendorp (KVI-CART, University of Groningen), International Conference on Exotic Atoms and Related Topics, September 2014, Vienna, Austria

university of groningen

kvi - center for advanced radiation technology

DES

Charming Physics using Matter-Antimatter Annihilations

n a n)d a

Johan Messchendorp (KVI-CART, University of Groningen), International Conference on Exotic Atoms and Related Topics, September 2014, Vienna, Austria

university of groningen

kvi - center for advanced radiation technology

DES

DiZcoveries Charming Physics using Matter-Antimatter Annihilations

Johan Messchendorp (KVI-CART, University of Groningen), International Conference on Exotic Atoms and Related Topics, September 2014, Vienna, Austria

Physics highlight of 2013

Physics 6, 138 (2013)

Physics highlight of 2013

Physics 6, 138 (2013)

 $/\Psi$

PRL33, 1404 (1974)

Experimental Observation of a Heavy Particle J†

J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Sam el C. C. Ting, and Sau Lan Wu Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Y. Y. Lee rookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1974)

 $p + \text{Be} \to J(\to e^+e^-) + X$

PRL33, 1406 (1974)

Discovery of a Narrow Resonance in e^+e^- Annihilation*

J.-E. Augustin, † A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman,

G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, † R. R. Larsen, V. Lüth,

H. L. Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl,

B. Richter, F Rapidis, R. F. Schwitters, W. M. Tanenbaum,

and F. Vannucci‡ Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305.

and

J. Wiss, and J. E. Zipse

(Received 13 November 1974)

 $e^+ + e^- \rightarrow \psi(3105) \rightarrow \dots$

40th Year anniversary!

J. A. Kadyk, B. Lulu, F. Pierre, § G. H. Trilling, J. S. WI

G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhab

Lawrence Berkeley Laboratory and Department of Physics, University of California,

What could be its nature?

1976: Nobel Prize to Ting&Richter for the discovery of the charm quark

next available Greek letter was "iota" ι = "insignificance"

Be happy they skipped that one!

1971: the birth of QCD

1971: the birth of QCD

 \bar{q} (i γ_{μ} D^{μ} - m_{q}) q Qua s,c,b gluc $-\frac{1}{4}$ $G^{\mu\nu}$ $G_{\mu\nu}$ CO

QCD – Quantum Chromo Dynamics Quarks and gluons carry

Meson spectroscopy and beyond

Meson spectroscopy and beyond

Meson spectroscopy and beyond

Charmonium - the "positronium" of QCD

Charmonium - the "positronium" of QCD

Charmonium - the "positronium" of QCD

Example from Barnes, Godfrey, Swanson: $V_{0}^{(c\bar{c})}(r) = -\frac{4}{3} \frac{\alpha_{s}}{r} + br + \frac{32\pi\alpha_{s}}{9m_{c}^{2}} \tilde{\delta}_{\sigma}(r)\vec{S}_{c} \cdot \vec{S}_{\bar{c}}$ (Coulomb + Confinement + Contact) $V_{\text{spin-dep}} = \frac{1}{m_{c}^{2}} \left[\left(\frac{2\alpha_{s}}{r^{3}} - \frac{b}{2r} \right) \vec{L} \cdot \vec{S} + \frac{4\alpha_{s}}{r^{3}} T \right]$ (Spin-Orbit + Tensor) **PRD72, 054026 (2005)**

Charmonium - the "positronium" of QCD

Charmonium - the "positronium" of QCD

Narrow quantum states

- beacons of QCD
- hardly overlapping
- background suppressed
- ideal experimental probes

Charmonium - the "positronium" of QCD

Narrow quantum states

- beacons of QCD
- hardly overlapping
- background suppressed
- ideal experimental probes

Heavy charm quarks

- dominant non-relativistic
- probes regime between perturbative and strong QCD

Charmonium - the "positronium" of QCD

Narrow quantum states

- beacons of QCD
- hardly overlapping
- background suppressed
- ideal experimental probes

Heavy charm quarks

- dominant non-relativistic
- probes regime between perturbative and strong QCD

Physics!

- confinement potential
- search for exotic hadrons
- QCD dynamics
- beyond standard model

BESII: today's charmonium factory

BESII: today's charmonium factory

ESI: today's charmonium factory

BEijing Spectrometer - III

ESI: today's charmonium factory

BEijing Spectrometer - III

BESII: today's charmonium factory

Ctron

July 2008:first hadronic eventMarch 2009:physics data takingToday:world's largest data set

BEijing Spectrometer - III

A few "old" highlights of **HS**

M(2K2ππ⁰) GeV/c²

A few "old" highlights of **HS**

M(2K2ππ⁰) GeV/c²

A few "old" highlights of **BES**

М(2К2πл⁰) GeV/c²

A few "old" highlights of **BES**

we observe featureless mass spectra. Similar studies of ISR events **Charmonium precisione bdiscovery** for additional pions reversion events that could feed down to $4.4 \int_{(4450)} \frac{\psi(4351)}{\psi(4360)} \int_{(4390)} \frac{\chi_{cl}(399)}{\chi_{cl}(399)}$

reconstructing the Λ Λ J/Ψ and Λ π J/Ψ intal states, we observe featureless mass spectra. Similar studies of ISR events Charmonium / precisione& discovery hore additional pions reversion persent cure that could feed down to C 4.4 $\eta_{c}(4^{1}S_{0})$ Y(4360 χ_{c2}(3³P₂) h_c(3¹P₁) $\chi_{c1}(3^{3}P_{1})$ Disco Y(4260) 4.2 $\chi_{c0}(3^{3}P_{0})$ ψ(2³D₁) 40 Events / 20 MeV/c^2 $e^{}$ ery 10 10^{3} Open charm threshold 10^{2} Preci<u>sio</u> 3.8 3.6 4.8 4.2 4.6 4.4predicted, discovered predicted, undiscovered unpredicted, discovered 10

we observe featureless mass spectra. Similar studies of ISR events with (4260, 4360) and there existings? or more addi-

ES - in action!

€S<u>∭</u> - in action!

₩ST - in action!

₩ - in action!

The Z_c(3900) was born...

PRL110, 252001 (BESIII) (2013)

PRL110, 252001 (BESIII), 252002 (Belle) (2013)

PRL110, 252001 (BESIII), 252002 (Belle) (2013)

 ${\begin{array}{*{20}c} 4.1 & 4.2 \\ M_{\pi^{*}h_{c}}(GeV/c^{2}) \end{array}}$

JPC

⁰ 3.7

3.8

3.9

4.0

PRL110, 252001 (BESIII), 252002 (Belle) (2013)

0 3.7 ${\begin{array}{*{20}c} 4.1 & 4.2 \\ M_{\pi^{*}h_{c}}(GeV/c^{2}) \end{array}}$ 3.8 3.9 4.0 Why the excitement? PRL110, 252001 (BESIII), 252002 (Belle) (2013) 11, 242001 (2013) 4230 + 4260+4360 MeV Events/(0.01GeV/c²) preliminary χc2(3³P₂) ³P₁) >5σ d Zc(4020,4025) .**|**P=' 3.95 3.9 4 4.05 4.1 4. 4.2 $\mathbf{M}_{\pi^0}^{\text{recoil}}|_{\text{max}}(\text{GeV/c}^2)$ Zc(3900) Zc(3885) J^P=1 70 72)? Events / (0.01 4.230 GeV A <u>charged</u> and <u>charmonium</u>-rich state 60 preliminary 50 At least 4 quarks involved 40 30 $\chi_{c2}(1^{3}P_{2})$ **Confirmed by Belle and Cleo-c data** 20 10 DD* decay strongly hints to J^P=1⁺ 3.8 4.0 4.2 $M(\pi^0 J/\psi)$ (GeV/c²) Z_c' state found: ~120 MeV/c² heavier! $J/\psi(1^{3}S_{1})$ **Isospin triplet established!** 3.0 $\eta_{c}(1^{1}S_{0})$ 0^{-+} 1+- 0^{++} 1++ 2++

PRL110, 252001 (BESIII), 252002 (Belle) (2013)

MASS [GeV/c²]

New class of hadronic matter seen, but...

New class of hadronic matter seen, but...

hadronic molecule?

Voloshin; Tornqvist; Close; Braaten; Swanson; Hanhart...

hadro-charmonium?

tetra-quark?

Maiani, Piccinini, Polosa, Riquer, ...

New class of hadronic matter seen, but...

hadronic molecule?

Voloshin; Tornqvist; Close; Braaten; Swanson; Hanhart...

tetra-quark?

Maiani, Piccinini, Polosa, Riquer, ...

Requires completing spectrum AND accurately determine properties

BESIII at IHEP, China

- > electron+positron
- > couples dominantly to J^{PC}=1⁻⁻ states
- > clean environment

BESIII at IHEP, China

- > electron+positron
- > couples dominantly to J^{PC}=1⁻⁻ states
- > clean environment

PANDA at FAIR, Germany

- > anti-proton+proton or light nuclei
- > couples to many J^{PC} states
- > hadronic environment, background

Scanning with cooled anti-protons: mass and width determination

PANDA at FAIR, Germany

- > anti-proton+proton or light nuclei
- > couples to many J^{PC} states
- > hadronic environment, background

Scanning with cooled anti-protons: mass and width determination

$$X(3872) \to J/\Psi \pi^+ \pi^-$$

MC simulations

PANDA at FAIR, Germany

- > anti-proton+proton or light nuclei
- > couples to many J^{PC} states
- > hadronic environment, background

PANDA, the challenges

PANDA, the challenges

Charming DiZ_c**overies using matter-antimatter annihilations**

Charming DiZ_c**overies using matter-antimatter annihilations**

The strong force fascinates: confinement, origin of mass, exotic matter

Charmonium provides a unique window to study the dynamics of the strong force

Charming DiZcoveries using matter-antimatter annihilations

The strong force fascinates: confinement, origin of mass, exotic matter

Charmonium provides a unique window to study the dynamics of the strong force

A new class of unconventional matter emerges from todays accelerators: e⁺e⁻ annihilations remain a discovery tool!

Future experiments (such as PANDA) aim to conclude on its nature and to discover...

Charming DiZ_coveries using matter-antimatter annihilations

The strong force fascinates: confinement, origin of mass, exotic matter

Charmonium provides a unique window to study the dynamics of the strong force

A new class of unconventional matter emerges from todays accelerators: e⁺e⁻ annihilations remain a discovery tool!

Future experiments (such as PANDA) aim to conclude on its nature and to discover...

Acknowledgments....

>350 scientists~53 institutes12 countries

International collaborations with large common interests