university of groningen
kvi - center for advanced

Charming Physics using Matter-Antimatter Annihilations

Physics highlight of 2013

Physics 6, 138 (2013)

Physics highlight of 2013

Back to 1974: the "November Revolution"

PRL33, 1404 (1974)
Experimental Observation of a Heary Particle f t
J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen G. Everhart P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Sam el C. C. Ting, nd Sau Lan Wu Labontory for Miclear Science and Department of Physics, Massacculusetis Inssitute of Technology,

Cambridge, Massacchusetts 02139
and
Y. Y. Lee
rookhaven National Laborctory, Upton, New York 11973
(Received 12 November 1974)

$$
p+\mathrm{Be} \rightarrow J\left(\rightarrow e^{+} e^{-}\right)+X
$$

PRL33, 1406 (1974)
Discovery of a Narrow Resonance in $e^{+} e^{-}$Annihilation*
J.-E. Augustin, \dagger A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman, G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, \dagger R. R. Larsen, V. Lüth, I I I on, C. C. Morehouse, J. M. Paterson, M. L. Perl, B. Richter, P Rapidis, R. F. Schwitters, W. M. Tanenbaum, and F . Vannuccit
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94.30.5

and

G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhab
J. A. Kadyk, B. Lulu, F. Pierre, \& G. H. Trilling, J. S. Wl J. Wiss, and J. E. Zipse

Lawrence Berkeley Laboratory and Department of Physics, University of California, (Received 13 November 1974)

$$
e^{+}+e^{-} \rightarrow \psi(3105) \rightarrow \ldots
$$

Back to 1974: the "November Revolution"

What could be its nature?

Back to 1974: the "November Revolution"

What could be its nature?

Baryon-Antibaryon Nuclei?

Goldhaber(s), PRL34, 36 (1975)

Spin-1 alternative to GIM?

Schwinger, PRL34, 37 (1975)
Three charm quarks (partners to $\mathbf{u}, \mathrm{d}, \mathrm{s}$)?
Barnett, PRL34, 41 (1975)
Lighter weak-force boson?
Sakurai, PRL34, 56 (1975)
Charmonium - charm-anticharm bound state!
Appelquist \& Politzer, PRL34, 43 (1975)
De Rujula \& Glashow, PRL34, 46 (1975)

Back to 1974: the "November Revolution"

1976: Nobel Prize to Ting\&Richter for the discovery of the charm quark

Back to 1974: the "November Revolution"

1976: Nobel Prize to Ting\&Richter for the discovery of the charm quark
next available Greek letter was "iota" $\mathrm{l}=$ "insignificance"

Be happy they skipped that one!

1971: the birth of QCD

ELEMENTARY PARTICLES
 $$
\varphi_{0 c o}=\sum_{\text {madse }} \dot{q}\left(i y_{1} D^{11} \cdot m_{q}\right) q
$$
 $$
-\frac{1}{4} G^{\mu v 1} G_{\mu \nu}
$$
 QCD -
 Quantum Chromo Dynamics

1971: the birth of QCD

Quarks and gluons carry color charge

QCD, its consequences

QCD, its consequences

QCD, its consequences

QCD, its consequences

Meson spectroscopy and beyond

Meson spectroscopy and beyond

Meson spectroscopy and beyond

Charmonium - the "positronium" of QCD

Charmonium - the "positronium" of QCD

Example from Barnes, Godfrey, Swanson:

$$
\begin{gathered}
V_{0}^{(c \bar{c})}(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+b r+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}} \tilde{\delta}_{\sigma}(r) \overrightarrow{\mathrm{S}}_{c} \cdot \overrightarrow{\mathrm{~S}}_{\bar{c}} \\
\text { (Coulomb + Confinement }+ \text { Contact) } \\
V_{\text {spin-dep }}=\frac{1}{m_{c}^{2}}\left[\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{b}{2 r}\right) \overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~S}}+\frac{4 \alpha_{s}}{r^{3}} \mathrm{~T}\right] \\
\text { (Spin-Orbit }+\quad \text { Tensor) }
\end{gathered}
$$

Charmonium - the "positronium" of QCD

Example from Barnes, Godfrey, Swanson:

$$
\begin{gathered}
V_{0}^{(c \bar{c})}(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+b r+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}} \tilde{\delta}_{\sigma}(r) \overrightarrow{\mathrm{S}}_{c} \cdot \overrightarrow{\mathrm{~S}}_{\bar{c}} \\
\text { (Coulomb + Confinement }+ \text { Contact) } \\
V_{\text {spin-dep }}=\frac{1}{m_{c}^{2}}\left[\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{b}{2 r}\right) \overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~S}}+\frac{4 \alpha_{s}}{r^{3}} \mathrm{~T}\right] \\
\quad \text { (Spin-Orbit }+\quad \text { Tensor) }
\end{gathered}
$$

Charmonium - the "positronium" of QCD

Charmonium - the "positronium" of QCD

Narrow quantum states

- beacons of QCD
- hardly overlapping
- background suppressed
- ideal experimental probes

Charmonium - the "positronium" of QCD

Narrow quantum states

- beacons of QCD
- hardly overlapping
- background suppressed
- ideal experimental probes

Heavy charm quarks

- dominant non-relativistic
- probes regime between perturbative and strong QCD

Charmonium - the "positronium" of QCD

Narrow quantum states

- beacons of QCD
- hardly overlapping
- background suppressed
- ideal experimental probes

Heavy charm quarks

- dominant non-relativistic
- probes regime between perturbative and strong QCD

Physics!

- confinement potential
- search for exotic hadrons
- QCD dynamics
- beyond standard model

BESIII: today's charmonium factory

BESIII: today's charmonium factory

BESIII: today's charmonium factory

$$
\star_{*^{*}}^{*}
$$

positim

BEijing Spectrometer - III

BESIII: today's charmonium factory

BGSIII: today's charmonium factory

July 2008: March 2009: Today:
first hadronic event physics data taking world's largest data set

posith

BEijing Spectrometer - III

A few "old" highlights of BCSIII

A few "old" highlights of BCSIII

PRL108, 222002 (2012)

resolved long-standing discrepancy between experiments and Lattice QCD

A few "old" highlights of BCSIII

PRL109, 042003 (2012), PRD87, 052005 (2013)

A few "old" highlights of BCSIII

PRL109, 042003 (2012), PRD87, 052005 (2013)

A few "old" highlights of BCSIII

PRL109, 042003 (2012), PRD87, 052005 (2013)

Charmonium: precision \& discovery!

X(3872): the "Poster Boy" of a new era!

X(3872): the "Poster Boy" of a new era!

X(3872): the "Poster Boy" of a new era!

X(3872): the "Poster Boy" of a new era!

X(3872): the "Poster Boy" of a new era!

Surprisingly narrow:

$$
\Gamma<1.2 \mathrm{MeV} \quad\left(\Gamma\left(\psi^{\prime \prime}\right)=27 \mathrm{MeV}\right)
$$

X(3872): the "Poster Boy" of a new era!

X(3872): the "Poster Boy" of a new era!

Surprisingly narrow:
$\Gamma<1.2 \mathrm{MeV}$
$\left(\Gamma\left(\psi^{\prime \prime}\right)=27 \mathrm{MeV}\right)$

Suspiciously close to DD* threshold:

$\Delta E=-0.13 \pm 0.40 \mathrm{MeV}$
Large isospin breaking:
$B(X \rightarrow \rho J / \Psi) \approx B(X \rightarrow \omega J / \Psi)$

X(3872): the "Poster Boy" of a new era!

Surprisingly narrow:

$$
\Gamma<1.2 \mathrm{MeV} \quad\left(\Gamma\left(\psi^{\prime \prime}\right)=27 \mathrm{MeV}\right)
$$

Suspiciously close to DD* threshold:

$. \Delta E=-0.13 \pm 0.40 \mathrm{MeV}$
Large isospin breaking:

$$
B(X \rightarrow \rho J / \Psi) \approx B(X \rightarrow \omega J / \Psi)
$$

Spin-parity (recent LHCb study):

$$
J^{P C}=1^{++} \quad \text { PRL110, } 222001 \text { (2013) }
$$

X(3872): the "Poster Boy" of a new era!

Surprisingly narrow:

$$
\Gamma<1.2 \mathrm{MeV} \quad\left(\Gamma\left(\psi^{\prime \prime}\right)=27 \mathrm{MeV}\right)
$$

Suspiciously close to DD* threshold:

$\Delta E=-0.13 \pm 0.40 \mathrm{MeV}$
Large isospin breaking:

$$
B(X \rightarrow \rho J / \Psi) \approx B(X \rightarrow \omega J / \Psi)
$$

Spin-parity (recent LHCb study):

$$
J^{P C}=1^{++} \quad \text { PRL110, } 222001 \text { (2013) }
$$

What is its nature?

$\mathrm{Y}(4260,4360)$: other exotics?

BESIII - in action!

BESIII - in action!

"XYZ" data taken at Ecm=3.8-4.6 GeV
Study the 1-line shape, "Y-scan"
Study hadronic \& electromagn. decays to (un)conventional charmonium states

BESIII - in action!

BESIII - in action!

The $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ was born...

Why the excitement?

A charged and charmonium-rich state
At least 4 quarks involved
Confirmed by Belle and Cleo-c data
DD* decay strongly hints to $\mathrm{J}^{\mathrm{P}}=1^{+}$
$Z_{c}{ }^{\prime}$ state found: $\boldsymbol{\sim 1 2 0 ~ M e V / c ^ { 2 }}$ heavier!

Why the excitement?

Why the excitement?

A charged and charmonium-rich state
At least 4 quarks involved
Confirmed by Belle and Cleo-c data
DD* decay strongly hints to $\mathrm{J}^{\mathrm{P}}=1^{+}$
Z_{c} ' state found: $\boldsymbol{\sim 1 2 0 ~ M e V / c ^ { 2 }}$ heavier!
Isospin triplet established!

Why the excitement?

$X(3872)$ in radiative transitions

$X(3872)$ in radiative transitions

$X(3872)$ in radiative transitions

$X(3872)$ in radiative transitions

$X(3872)$ in radiative transitions

New class of hadronic matter seen, but...

New class of hadronic matter seen, but...

hadronic molecule?

Voloshin; Tornqvist; Close; Braaten; Swanson; Hanhart...

hadro-charmonium?

tetra-quark?

Maiani, Piccinini, Polosa, Riquer, ...

something else?

New class of hadronic matter seen, but...

hadronic molecule?

Voloshin; Tornqvist; Close; Braaten; Swanson; Hanhart...

hadro-charmonium?

tetra-quark?

Maiani, Piccinini, Polosa, Riquer, ...

something else?

The next generation charmonium spectroscopy

The next generation charmonium spectroscopy

BESIII at IHEP, China

> electron+positron
$>$ couples dominantly to JPC^{-1-} states
> clean environment

The next generation charmonium spectroscopy

BESIII at IHEP, China

> electron+positron
$>$ couples dominantly to JPC $=1-$ states
> clean environment

PANDA: 2019-??

PANDA at FAIR, Germany

> anti-proton+proton or light nuclei
> couples to many JPC states
> hadronic environment, background

The next generation charmonium spectroscopy

Scanning with cooled anti-protons: mass and width determination

PANDA: 2019-??

PANDA at FAIR, Germany

> anti-proton+proton or light nuclei
> couples to many JPC states
> hadronic environment, background

The next generation charmonium spectroscopy

Scanning with cooled anti-protons:

 mass and width determination$X(3872) \rightarrow J / \Psi \pi^{+} \pi^{-}$

Input Width $\Gamma_{\mathrm{X}(3872)}=100 \mathrm{keV}$

M. Galuska et al., PoS(Bormio2012)018

PANDA: 2019-??

PANDA at FAIR, Germany

> anti-proton+proton or light nuclei
> couples to many JPC states
> hadronic environment, background

PANDA, the challenges

PANDA, the challenges

Charming DiZcoveries using matter-antimatter annihilations

Charming DiZ_overies using matter-antimatter annihilations

The strong force fascinates:
confinement, origin of mass, exotic matter

Charmonium provides a unique window to study the dynamics of the strong force

Charming DiZcoveries using matter-antimatter annihilations

The strong force fascinates:
confinement, origin of mass, exotic matter

Charmonium provides a unique window to study the dynamics of the strong force

A new class of unconventional matter
 emerges from todays accelerators: $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations remain a discovery tool!

Future experiments (such as PANDA) aim to conclude on its nature and to discover...

Charming DiZcoveries using matter-antimatter annihilations

The strong force fascinates:
confinement, origin of mass, exotic matter

Charmonium provides a unique window to study the dynamics of the strong force

A new class of unconventional matter
 emerges from todays accelerators: $e^{+} e^{-}$annihilations remain a discovery tool!

Future experiments (such as PANDA) aim to conclude on its nature and to discover...

Acknowledgments....

International collaborations with large common interests

