GBAR principle: cool $\overline{\mathrm{H}}^{+}$ to get ultra-slow $\overline{\mathrm{H}}$

$$-\overline{H}^+ = \overline{p} e^+ e^+$$

- Sympathetic cooling with Be⁺ \rightarrow 10 μ K
- Photodetachment of e⁺
- Time of flight

$$\overline{\mathbf{H}}$$

$$\frac{\overline{\mathbf{H}}}{\mathbf{L}}$$

$$\frac{1}{\mathbf{L}}$$

$$\frac{m_i \vec{a} = m_g \vec{g}}{h = v_z^0 t + \frac{1}{2} \frac{m_g}{m_i} g t^2}$$

$$\frac{\mathbf{L}}{\mathbf{L}}$$

A recipe to produce anti ions

Binding energy of $\overline{H}^+ = 0.75 \text{ eV} = \text{energy level of Ps(n=3)}$

Expect cross-section enhancement if Ps excited to n=3

P. Pérez - EXA2014

$\overline{\mathrm{H}}^{+}$ production

P. Comini and P-A. Hervieux, J. Phys.: Conf. Ser. 443, 012007 (2013) P. Comini, P-A. Hervieux and F. Biraben, LEAP 2013

P. Pérez - EXA2014

Antiprotons: CERN AD / ELENA

Layout

O. Choisnet F. Butin

GBAR antiproton decelerator

D. Lunney P. Dupré

 4π mm mrad

Ps formation

P. Crivelli L. Liszkay

 $1 \text{ mm} \times 1 \text{ mm} \times 2 \text{ cm}$ Si with mesoporous SiO₂ coating

Test on ETHZ beam line Transmission @ 5 keV ~ 100% Ps formation efficiency as for bare SiO₂ Same Ps lifetime distribution

P. Crivelli, WAG2013

oPs

Ps excitation laser (n=3)

Presently developed at LKB – Paris To be tested at Saclay

e+/Ps demonstrator at Saclay

- 4.3 MeV / 200 Hz / 2.5 μs / 120 μA
- 3 10⁶ slow e⁺/s
- with first W mesh moderator
- Penning trap on beam line (from RIKEN)
- First trapping trials
- Secondary beam line
- \rightarrow moderator developments
- \rightarrow e+/Ps converters
- Ps* laser being prepared at LKB (Paris)

e⁻ Linac Ec = 4.3 MeV I = 0.14 mA

CERN version: 10 MeV, 0.2 mA Built by NCBJ Warsaw \rightarrow 1-3 10⁸ e⁺/s

RIKEN Multi-Ring Trap

Must accumulate 3 10¹⁰ e⁺ in 110 s

e⁺ trapping

H⁺ production scheme

\overline{H} with v < 1 m/s ?

L. Hilico et al., Int. Journal Mod. Phys: Conf. Series, 30 (2014) 1460269.

Cooling challenges

$\overline{H}{}^{\scriptscriptstyle +}$ cooling simulations

L. Hilico

9/1 mass ratio : bad mechanical coupling 9/2 mass ratio : much better mechanical coupling

Raman side band cooling

Two cooling steps

L. Hilico F. Schmidt-Kaler

Precision trap

S. Wolf F. Schmidt-Kaler

Precision trap being prepared at Mainz Laser table ready for tests with Ca⁺/Be⁺, later Sr⁺/Be⁺

GBAR overall scheme

17 Sept. 2014

P. Pérez - EXA2014

$\overline{\mathbf{H}}$ free fall detection

topology

MicroMegas detector

D. Banerjee, P. Crivelli S. Aune, B. Vallage

Argon Isobutane (95%, 5%) Pitch of strip ~ 400 microns X and Y strips give track position directly

Genetic multiplexing of strips S. Procureur et al, NIM A 729 (2013) 888

Spectroscopy of gravitational states

Velocity selector

G. Dufour et al., Eur. Phys. J. C 74 (2014) 2731

First simulations \rightarrow optimise dimensions with experimental constraints $h = 50 \ \mu m$ $H = 20 \ cm$, Rdetector = 20 cm Shaper Rmin = 1 mm, Rmax = 7 mm \rightarrow need 150 produced \overline{H}^+ for $\Delta g/g = 1\%$ 10 times less than in proposal

15 institutes ~ 50 researchers

start installation
ELENA commissioning with p and H⁻
first antiprotons for GBAR

P. Pérez - EXA2014