New Aspects of Hadron Spectroscopy with Heavy Flavor

Makoto Oka

Tokyo Institute of Technology

EXA2014 Vienna, Sep. 15, 2014

1. Introduction

- 2. Key Dynamics
- **3. Charm Baryon Spectroscopy**
- 4. Exotic Charmed Hadrons
- **5.** Conclusion

Introduction New Hadron Spectroscopy

± 50 year anniversary of the Quark Model (1964)

EXA.f.key - 2014年9月16日

50 year anniversary of the Quark Model (1964)

- **#** 50 year anniversary of the Quark Model (1964)
- The quark model gives a very good guideline to classify and interpret the low-lying hadrons in QCD.

- **#** 50 year anniversary of the Quark Model (1964)
- The quark model gives a very good guideline to classify and interpret the low-lying hadrons in QCD.
- The charmonium spectrum gives a textbook example of the quark model.

Linear + Coulomb potential

$$V(r) = -\frac{e}{r} + \sigma r$$

E. Eichten, et al., PRL 34 (1975) 369

EXA.f.key - 2014年9月16日

EXA.f.key - 2014年9月16日

"Charged" Quarkonia?

Hidden charm states which decay into $cc^{bar}+\pi^{\pm}$.

 $Z_{c}^{+}(4430), Z_{c1}^{+}(4050), Z_{c2}^{+}(4250)$

"Charged" Quarkonia?

\blacksquare Z_b[±] at Belle and LHCb (confirmed)

They require at least 4 quarks (~QQ^{bar}+ud^{bar}), i.e., tetraquarks or hadron molecules.

Why Heavy Quarks are interesting?

The c, b, (t) quarks have large masses.
 m(ρ/ω): m(K*): m(D*): m(B*)
 = 1 : 1.15 : 2.59 : 6.87

$\Lambda_{QCD}(\sim 300 \text{ MeV}) \ll m_c(\sim 1.3 \text{ GeV}) \ll m_b(\sim 4.2 \text{ GeV})$

light quarks	N _{QCD} h	ieavy qu	uarks	m _q		
1 10 100 Me	V 1	10 b	100 GeV			
chiral symmetry	y he	eavy qu	ark symme	etry		
m _q expansion		(1/m _Q) expansion				

Why Heavy Quarks are interesting?

 Dynamics of Heavy Quarks
 Asymptotic free small α_s ~ ν/c (~ 0.25 for charm)
 → Heavy Quark Spin Symmetry

Non-relativistic

QQ^{bar} mixing is suppressed.

Heavy quarks provide color sources for light quarks. Can focus on the dynamics of light quarks.

Why Heavy Quarks are interesting?

- Dynamics of Heavy Quarks
 Asymptotic free small α_s ~ ν/c (~ 0.25 for charm)
 → Heavy Quark Spin Symmetry
 - Non-relativistic
 - QQ^{bar} mixing is suppressed.
 - Heavy quarks provide color sources for light quarks. Can focus on the dynamics of light quarks.
- Are *Strange* quarks light or heavy? Or both?
 SU(3)_f symmetry vs HQ symmetry

EXA.f.key - 2014年9月16日

- \blacksquare $\Lambda(1405)$ as a (K^{bar}N) molecule
 - the lowest negative parity baryon resonance
 - significantly lower than the other P-wave baryons
- **#** H dibaryon
 - B=2, Str = -2, J=0⁺, I=0 resonance predicted by Jaffe (1977)
 - Also predicted by the LQCD calculation (HALQCD, etc)
 - (strongly) coupled to $\Lambda\Lambda$ -N Ξ - $\Sigma\Sigma$ two-baryon channels
- **¤** Θ⁺ pentaquark

- Str = +1 baryon resonance, classified as SU(3) 10^{bar} predicted in the chiral quark model by Diakonov.

- \blacksquare S= -2, -3 baryons
 - The available data are very limited.

- A(1405) as a (K^{bar}N) molecule Hadron molecule
 the lowest negative parity by Hadron molecule
 - the lowest negative parity baryon resonance
- significantly lower than the other P-wave baryons H dibaryon
 B=2, Str = -2, J=0⁺, I=0 resonance predicted by Jaffe (1977) **#** H dibaryon

 - Also predicted by the LQCD calculation (HALQCD, etc)
- $\blacksquare \Theta^+$ pentaquark
- Str = +1 baryon resonance, classified as SU(3) 10^{bar} predicted in the chiral quark model by Diakonowhadron # S= -2, -3 baryons Multi-flavor hadron

- The available data are very limited.

- A(1405) as a (K^{bar}N) molecule
 the lowest negative parity by Hadron molecule
 - the lowest negative parity baryon resonance
- significantly lower than the other P-wave baryons H dibaryon
 B=2, Str = -2, J=0⁺, I=0 resonance predicted by Jaffe (1977) **#** H dibaryon

 - Also predicted by the LQCD calculation (HALQCD, etc)
 - (strongly) coupled to $\Lambda\Lambda$ -N Ξ - $\Sigma\Sigma$ two-baryon channels Θ^+ pentaquark Exotic hadron
- $\blacksquare \Theta^+$ pentaquark
- Str = +1 baryon resonance, classified as SU(3) 10^{bar} predicted in the chiral quark model by Diakonowhadron # S=-2, -3 baryons Multi-flavor hadron
- - The available data are very limited.

Are these "novel" features unique to the Strangeness? Do they persist in the charm/bottom sectors? EXA2014

Key Dynamics

Heavy Quark Spin Symmetry

Diquark correlation

Heavy Quark Spin Symmetry

Magnetic gluon coupling is suppressed

1a

$$\bar{\Psi}\gamma^{\mu}\frac{\lambda}{2}\Psi A^{a}_{\mu} \sim \Psi^{\dagger}\frac{\lambda}{2}\Psi A^{a}_{0} - \Psi^{\dagger}\sigma\frac{\lambda}{2}\Psi \cdot \frac{1}{m_{Q}}(\nabla \times A^{a})$$
(Color Electric coupling) » (Color Magnetic coupling)
HQ spin-flip amplitudes are suppressed by (1/m_Q).
 \Rightarrow Heavy Quark Spin Symmetry

1a

EXA2014

Ja

15

Heavy Quark Spin Symmetry

HQ spin symmetry $[S_Q, H] = O\left(\frac{1}{m_Q}\right)$ $\begin{array}{c} Q\\ q \end{array}$ $\begin{array}{c} \\ \end{array}$ $\vec{J} = \vec{S}_Q + \vec{j}_L \qquad \vec{j}_L = \vec{S}_q + \vec{L}_q \end{array}$

 $J = j_L \pm \frac{1}{2}$ states are degenerate in the HQ limit.

- QCD predicts attraction in the PS and S channels: PS meson qq^{bar} : color 1, J^π=0⁻, flavor 1+8
 S diquark [qq]₀ : color 3^{bar}, J^π=0⁺, flavor SU(3) 3^{bar} : [ud]₀, [ds]₀, [sd]₀
- **#** perturbative one gluon exchange color magnetic interaction $CMI = (-\alpha) \Sigma_{ij} (\lambda_i \cdot \lambda_j) (\sigma_i \cdot \sigma_j) = -16 \alpha$ for PS qq^{bar} meson $= -8 \alpha$ for S qq diquark
- Image: non-perturbative instanton induced interaction (III)
 attraction in the flavor antisymmetric states
- \blacksquare These quark-model interactions yieldM(A)-M(S) = (2/3) [M(\Delta)- M(N)] ~ 200 MeV(32/3) α +8 α (-8 α) =16 α

Heavy Baryons, Λ_Q, Σ_Q = Q + (qq)
 Because the spin dependent interaction is suppressed between the heavy Q and light quarks, the heavy baryon spectrum is sensitive to the light diquark (qq) *spin-dependent* correlation.

		J^{π}	color	flavor
Pseudoscalar	$\epsilon_{abc}(u_a^T C d_b)$	0-	$\overline{3}$	$\bar{3}$ $(I=0)$
Scalar	$\epsilon_{abc}(u_a^T C \gamma^5 d_b)$	0+	3	$\bar{3} (I=0)$
Vector	$\epsilon_{abc}(u_a^T C \gamma^\mu \gamma^5 d_b)$	1-	3	$\bar{3} (I=0)$
Axial Vector	$\epsilon_{abc}(u_a^T C \gamma^\mu d_b)$	1+	$\bar{3}$	6(I = 1)
	$\epsilon_{abc}(u_a^T C \sigma^{\mu u} d_b)$	$1^+, 1^-$	$\overline{3}$	6(I=1)
color 6	$(u_a^T C d_b) + (a \leftrightarrow b)$	0-	6	6 (I = 1)
only in Exotic Hadrons	$(u_a^T C \gamma^5 d_b) + (a \leftrightarrow b)$	0+	6	6~(I=1)
	$(u_a^T C \gamma^\mu \gamma^5 d_b) + (a \leftrightarrow b)$	1-	6	6~(I=1)
	$(u_a^T C \gamma^\mu d_b) + (a \leftrightarrow b)$	1+	6	$\bar{3} (I=0)$
	$(u_a^T C \sigma^{\mu\nu} d_b) + (a \leftrightarrow b)$	$1^+, 1^-$	6	$\bar{3}~(I=0)$

Scalar diquark

as a new building block of the Quark Model qq: color 3^{bar} , spin-parity 0^+ , flavor 3^{bar} in SU(3) $U = [\bar{d}\bar{s}]_{C=3,J=0,F=3}, \quad D = [\bar{s}\bar{u}]_{3,0,3}, \quad S = [\bar{u}\bar{d}]_{3,0,3}$

- diquark "meson" d d^{bar} \rightarrow tetra-quark
- di-diquark "baryon" d-d-q \rightarrow pentaquark
- tri-diquark "dibaryon" $d^3 \rightarrow dibaryon$ color 1, flavor 1, H dibaryon $H = [\overline{U}\overline{D}\overline{S}]_A = [uuddss]$
- diquark matter: color superconductivity
 U^{bar}+D^{bar}+S^{bar} condensates: color-flavor locking (CFL)
 S^{bar}: 2SC (U^{bar}: uSC D^{bar}: dSC)

Scalar diquark

as a new building block of the Quark Model qq: color 3^{bar}, spin-parity 0⁺, flavor 3^{bar} in SU(3) $U = [\bar{d}\bar{s}]_{C=3,J=0,F=3}, \quad D = [\bar{s}\bar{u}]_{3,0,3}, \quad S = [\bar{u}\bar{d}]_{3,0,3}$ - diquark "meson" d d^{bar} \rightarrow tetra-quark - di-diquark "baryon" d-d-q \rightarrow pentaguark - tri-diquark "dibaryon" $d^3 \rightarrow dibaryon$ color 1, flavor 1, H dibaryon $H = [\overline{U}\overline{D}\overline{S}]_A = [uuddss]$ - diquark matter: color superconductivity Ubar+Dbar+Sbar condensates: color-flavor locking (CFL) S^{bar}: 2SC (U^{bar}: uSC D^{bar}: dSC)

Charmed Baryon Spectroscopy

Ground states

- All the ground-state (S-wave) single charm baryons have been observed, and are consistent with the quark model.
- Lattice QCD reproduces the ground state baryon spectrum fairly well.
- Y. Namekawa, et al., (PACS-CS Collaboration)
 (2+1) flavor with physical quark mass, PRD 87, 094512 (2013)

Ground states

- All the ground-state (S-wave) single charm baryons have been observed, and are consistent with the quark model.
- **#** Lattice QCD reproduces the ground state baryon spectrum

- The Diquark "cluster" can be identified with the help of the heavy quark in the HQ baryon spectroscopy.
- The ρ mode excitations of the HQ baryons provide us with a diquark spectrum.
- **#** The λ mode excitations reveal the interaction of the diquarks.
- **I** The decays of the ρ and λ modes have different properties. ρ -mode \rightarrow Heavy baryon (Qqq) + light mesons (qq^{bar}) λ -mode \rightarrow Heavy meson (Qq^{bar}) + light baryon (qqq)

- # The Diquark "cluster" can be identified with the help of the heavy (ο mode λ mode and λ mode and λ
- The ρ mod a diquark s
- The λ mod diquarks.

In The decays of the ρ and λ modes have different properties.
ρ-mode → Heavy baryon (Qqq) + light mesons (qq^{bar})
λ-mode → Heavy meson (Qq^{bar}) + light baryon (qqq)

Probabilities of λ and ρ modes v.s. heavy quark mass
 by a Hamiltonian quark model with spin-spin, spin-orbit and tensor forces

Yoshida, Sadato, Hosaka, Hiyama, MO, in preparation.

Negative-parity states

EXA2014

25

Negative-parity states

EXA.f.key - 2014年9月16日

Negative-parity states

EXA.f.key - 2014年9月16日

Hadron Hall, J-PARC, @Tokai

Primary Proton Beam (30GeV), 10¹⁰⁻¹² per spill High Momentum un-separated secondary beam (≤20GeV/c), 10⁷ per spill Primary Proton Beam (8GeV) for COMET

$\Xi_c = csu, csd, SU(3)$ diquarks

♯ [us]_J, [ds]_J diquarks are probed by the Ξ_c spectrum

Exotic Charmed States

Charm in Nuclei

Possible charmed hadron nuclei

DNN bound state

M. Bayar, C.W. Xiao, T. Hyodo, A. Dote, M.O., E. Oset, PR C86 (2012) 044004

Charmed deuteron: $\Lambda_c N - \Sigma_c N - \Sigma^*_c N$ bound states Charmed hypernuclei: $\Lambda_c pn$ bound state

Yan-rui Liu, M.O., " $\Lambda_c N$ bound states revisited", PR D85 (2012) 014015W. Meguro, Y.R. Liu, M.O., "Possible $\Lambda_c \Lambda_c$ molecular bound state",
Phys. Lett. B704 (2011) 547.

Hidden-charm nuclei, *i.e.*, J/ψ, η_c nuclei: bound (J/ψ, η_c) - ⁴He nuclei.

A. Yokota, E. Hiyama, M.O., "Possible existence of charmonium–nucleus bound states", PTEP (2013) 113D01.

Yc-N charmed deuteron

H. Bando, S. Nagata, PTP 69, 557 (1983), H. Bando, PTP S81,

Binding energies of a flavour baryon, A(strange), $A_c(\text{charmed})$ and $A_b(\text{beauty})$, in nuclear matter and in the *a*-particle are investigated within the framework of the lowest-order Brueck-ner theory by employing the OBE potentials derived on the basis of the Nijmegen model D interaction.

SU(4) extension of the Nijmegen HC model potential is employed.

- No K, K* exchanges are allowed for the Λ_cN, which results in the weaker Y_cN potential compared with ΛN.
- No 2-body bound state is found.

Y_c-N charmed deuteron

- We have reexamined the possibility of the Y_cN and Y_cY_c bound states from the modern view points of the heavy quark symmetry and chiral symmetry.
- One-boson-exchange (OBE) potential model for the Y_cN system is constructed and
 Λ_c N-Σ_c N-Σ^{*}_c N (0⁺: ¹S₀-⁵D₀)
 Λ_c N-Σ_c N-Σ^{*}_c N (1⁺: ³S₁-^{3,5}D₁)
 coupled channel systems are considered.
- The OPE tensor force induces strong mixings of the D-wave Σ_cN (S=1) and Σ^{*}_cN (S=1, 2) states, whose thresholds are degenerate in the large m_Q limit.

Y_c-N charmed deuteron

- We have reexamined the pose states from the modern view symmetry and chiral symmetry
- $\begin{array}{c} \blacksquare & \text{One-boson-exchange (OBE)} \\ & \text{system is constructed and} \\ & \Lambda_c \operatorname{N}-\Sigma_c \operatorname{N}-\Sigma^*_c \operatorname{N} (0^+: {}^{1}\mathrm{S}_{0}-{}^{5}\mathrm{D}_{0}) \\ & \Lambda_c \operatorname{N}-\Sigma_c \operatorname{N}-\Sigma^*_c \operatorname{N} (1^+: {}^{3}\mathrm{S}_{1}-{}^{3,5}\mathrm{D}_{1}) \end{array} \right. \\ & \Lambda_c \operatorname{N} 3225$

coupled channel systems are considered.

The OPE tensor force induces strong mixings of the D-wave Σ_cN (S=1) and Σ^{*}_cN (S=1, 2) states, whose thresholds are degenerate in the large m_Q limit.

Y_c-N charmed deuteron

- Heavy-quark spin symmetry, chiral symmetry, and hidden local symmetry are used to determine the meson-baryon couplings.
- Short range part of the potential by the monopole form factor for each vertex $F(q) = \frac{\Lambda^2 - m^2}{\Lambda^2 - q^2}$
- We found bound states in both $J^{\pi}=0^+$ and 1^+ states.
- The binding energies depend on the choice of Λ .

$\Lambda_c N: 0^+ \qquad \Lambda_c N({}^1S_0) - \Sigma_c N({}^1S_0) - \Sigma_c^* N({}^5D_0)$ $\text{OMEP model } (\Lambda_{\text{com}} \& \alpha)$

Yan-Rui Liu, M.O., Phys. Rev. D85 (2012) 014015

22/38

Yc-N charmed deuteron

- Further studies are going on to include the short range part of the potential in a dynamical model.
 The color-magnetic interaction in the quark cluster model gives V(Λ_c-N) ~ 300 MeV, V(Σ_c-N) ~ 100 MeV at R=0 compared with V(N-N; ¹S₀) ~ 450 MeV, V(Λ-N; ¹S₀) ~ 400 MeV
- Preliminary results show that the Λ_c-N interaction is strong enough so that Λ_c-N system is barely bound, and there will be some Λ_c-Nucleus bound states, such as Λ_c-p-n (charmed triton). *S. Maeda, Y.R. Liu, E. Hiyama, M.O.*

Double Charm Tetraquark

Double charm meson

 T_{cc} (ccu^{bar}d^{bar}, 1⁺, I=0) = [cc]_{1+} [u^{bar}d^{bar}]_{0+}

 The lowest strong-decay threshold is D(0⁻) – D*(1⁻) (L=0).
 If the scalar diquark is light enough to make T_{cc} bound below DD* threshold, T_{cc} will be a stable tetra-quark resonance. S. Zouzou, et al., Z. Phys. C30 (1986)457 H.J. Lipkin, Phys. Lett. B172 (1986) 242

 I New possible color correlations

Hyodo, Liu, Oka, Sudoh, Yasui, PLB721 (2013) 56-60, ArXiv 1209.6207

Double Charm Tetraquark

Exotic Hadrons

Exotic Hadrons are "Colorful" ! (Lipkin@YKIS06)

$(qq)_8$ or $(qq)_6$ are allowed only in the multi-quarks.

Production in e⁺ e⁻ collisions

e+ e- collisions at Belle (KEKB; B-factory)
 Double-charm productions (J/ψ+η_c, ...) have been observed.

K. Abe, et al, Belle Collaboration, Phys. Rev. Lett. 89, 142001 (2002)

Recombination of the charm quarks and antiquarks will produce double charmed mesons (T_{cc} 's) and baryons (Ξ_{cc}).

Production of doubly charmed tetraquarks with exotic color configurations in electron-positron collisions", T. Hyodo, Y.-R. Liu, M. O., K. Sudoh, S. Yasui, PL B721 (2013) 56-60.

Cross section

Momentum distribution depends on the color configurations.

Conclusion

- Spectroscopy of HQ hadrons open a new era of the HADRON
 SPECTROSCOPY. Experimental data are precious.
- QCD is the first principle. Yet, we need to choose *proper* degrees of freedom to characterize hadron structures.
- Diquark is a new building block. The charmed baryons are useful for diquark spectroscopy.
- Various bound systems with charm hadrons may be possible.
 J/ψ-nuclei, D-nuclei and charmed hypernuclei.
- New accelerators for heavy hadron spectroscopy are coming ex, charmed mesons, exotics, baryons, charmed nuclei.

Conclusion

- Spectroscopy of HQ hadrons open a new era of the HADRON
 SPECTROSCOPY. Experimental data are precious.
- QCD is the first principle. Yet, we need to choose *proper* degrees of freedom to characterize hadron structures.
- Diquark is a new building block. The charmed baryons are useful for diquark spectroscopy.
- Various bound systems with charm hadrons may be possible.
 J/ψ-nuclei, D-nuclei and charmed hypernuclei.
- New accelerators for heavy hadron spectroscopy are coming ex, charmed mesons, exotics, baryons, charmed nuclei.

Thank you very much!