Interaction of antiproton with nuclei

Jaroslava Hrtánková, Jiří Mareš

Nuclear Physics Institute, Řež, Czech Republic

EXA2014, Vienna, September 15 - 19

Introduction

- study of \bar{p} bound states in selected nuclei:
 - behavior of \bar{p} in the nuclear medium
 - changes of the nuclear binding energy, single particle energies and density distributions
 - ullet $ar{p}$ absorption in a nucleus
- previous study I.N. Mishustin et al., Phys. Rev. C 71 (2005)
 - possibility of long living \bar{p} in the nuclear medium?
- testing models of (anti)hadron-hadron interactions
- knowledge of \bar{p} -nucleus interaction for future experiments (PANDA@FAIR)

RMF approach

- Nucleons treated as Dirac fields interacting via the exchange of meson fields
 - isoscalar-scalar field σ , isoscalar-vector field ω_{μ} , isovector-vector field $\vec{\rho}_{\mu}$, and massless vector field A_{μ} .
- The standard RMF models TM and density dependent model TW99

$$g_{iN}(\rho_{VN}) = g_{iN}(\rho_{sat})f_i(x) , \quad i = \sigma, \omega, \rho ,$$

where $ho_{
m V\it N}$ is a vector baryon density and $x=
ho_{
m V\it N}/
ho_{
m sat}$

(S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999))

RMF approach

Dirac equation for nucleons and antiproton

$$\begin{split} [-i\vec{\alpha}\vec{\nabla} + \beta \big(m_j + S_j\big) + V_j]\psi_j^\alpha &= \epsilon_j^\alpha \psi_j^\alpha \;, \quad j = N, \bar{p} \;, \\ S &= g_{\sigma j}\sigma, \quad V_j = g_{\omega j}\omega_0 + g_{\rho j}\rho_0\tau_3 + e_j\frac{1+\tau_3}{2}A_0 + \Sigma_R \;, \\ \Sigma_R &= \frac{\partial g_{\omega N}}{\partial \rho_{VN}}\rho_{VN}\omega_0 + \frac{\partial g_{\rho N}}{\partial \rho_{VN}}\rho_{IN}\rho_0 - \frac{\partial g_{\sigma N}}{\partial \rho_{VN}}\rho_{SN}\sigma \;. \end{split}$$

Klein-Gordon equations for meson fields

$$(-\triangle + m_{\sigma}^{2})\sigma = -g_{\sigma N}(\rho_{VN})\rho_{S} - g_{\sigma\bar{p}}(\rho_{VN})\rho_{S\bar{p}}$$

$$(-\triangle + m_{\omega}^{2})\omega_{0} = g_{\omega N}(\rho_{VN})\rho_{V} + g_{\omega\bar{p}}(\rho_{VN})\rho_{V\bar{p}}$$

$$(-\triangle + m_{\rho}^{2})\rho_{0} = g_{\rho N}(\rho_{VN})\rho_{I} + g_{\rho\bar{p}}(\rho_{VN})\rho_{I\bar{p}}$$

$$-\triangle A_{0} = e\rho_{\rho} + e_{\bar{p}}\rho_{\bar{p}}.$$

\bar{p} -nucleus interaction

ullet NN o $\overline{\it N}$ N interaction - G-parity transformation $\hat{\it G}=\hat{\it C}\,e^{i\pi I_1}$

Fig.1: The scalar and vector potential acting on nucleon in 16 O (left) and \bar{p} in 16 O $_{\bar{p}}$ (right), calculated statically in the TM2 model.

\bar{p} -nucleus interaction

- Antiprotonic atoms: energy shifts and widths due to the strong interaction \rightarrow the depth of ReV $_{\bar{p}} \sim 100-300$ MeV (E. Friedman, A. Gal, J. Mares, Nucl. Phys. A 761, 283 (2005))
- Reduced \bar{p} coupling constants

$$g_{\sigmaar{p}}=\xi\,g_{\sigma N},\quad g_{\omegaar{p}}=-\xi\,g_{\omega N},\quad g_{
hoar{p}}=\xi\,g_{
ho N}\;,$$

where parameter ξ is from $\langle 0,1 \rangle$

- large polarization effects confirmed (I.N. Mishustin et al, Phys. Rev. C 71 (2005))
- density dependent model TW99 similar results as TM model

The issue of the \bar{p} self-interaction

KG equations for a meson field acting on nucleons:

$$(-\triangle + m_M^2)\Phi_N = g_{MN}\rho_{MN} + g_{M\bar{p}}\rho_{M\bar{p}}$$

acting on \bar{p} :

$$(-\triangle + m_M^2)\Phi_{\bar{p}} = g_{MN}\rho_{MN}$$

Fig.2: The \bar{p} density in $^{208}\text{Pb}_{\bar{p}}$, calculated with and without the \bar{p} self-interaction.

The \bar{p} absorption

p̄-nucleus optical potential:

$$\begin{split} \operatorname{Re} V_{\overline{p}} = & \xi \, V_{\mathrm{RMF}} \ , \\ \operatorname{Im} V_{\overline{p}} = & \sum_{channel} f_{s} B_{r} \operatorname{Im} b_{0} \rho_{\mathrm{RMF}} \ , \end{split}$$

$$\xi = 0.2, \; {\rm Im} \, b_0 = 1.9 \; {\rm fm}$$

Fig.3: The phase space suppression factor f_s as a function of the center-of-mass energy \sqrt{s} .

The \bar{p} absorption

Table 1: The 1s single particle energies $E_{\bar{p}}$ and widths $\Gamma_{\bar{p}}$ (in MeV) in $^{16}{\rm O}_{\bar{p}}$, calculated dynamically (Dyn) and statically (Stat) with the real, complex and complex with f_s potentials (TM2 model), consistent with \bar{p} -atom data.

	Real		Complex		Complex + f _s	
	Dyn	Stat	Dyn	Stat	Dyn	Stat
$E_{\bar{p}}$	193.7	137.1	175.6	134.6	190.2	136.1
$\Gamma_{ar{p}}$	-	_	552.3	293.3	232.5	165.0

CMS vs LAB frame

 $ar{p}$ absorption in a nucleus ightarrow non-negligible contribution from the momentum dependent term in

$$s = (E_N + E_{\bar{p}})^2 - (\vec{p}_N + \vec{p}_{\bar{p}})^2 , \quad \vec{p}_N + \vec{p}_{\bar{p}} \neq 0,$$

where $E_i = m_i - B_i$ for $i = N, \bar{p}$. (A. Cieply et al., Phys. Lett. B 702, 402 (2011))

Table 2: The 1s single particle energies $E_{\bar{p}}$ and widths $\Gamma_{\bar{p}}$ (in MeV) in $^{16}O_{\bar{p}}$, calculated dynamically in TM2 model with different approach to \sqrt{s} , consistent with \bar{p} -atom data.

	CMS	LAB
$E_{\bar{p}}$	190.2	191.6
$\Gamma_{\bar{p}}$	232.5	179.9

Spin symmetry in \bar{p} spectrum

- relativistic symmetry of Dirac Hamiltonian when V=S+const (J.N. Ginocchio, Phys. Rep. 414, 165 261 (2005))
- ullet spin doublets states with $j=\ell\pmrac{1}{2}$ are degenerate
- upper components of \bar{p} wave function are equal $g_{n_r,\ell+1/2}(r)=g_{n_r,\ell-1/2}(r)$
- lower components are related by the equation

$$\left(\frac{\partial}{\partial r} + \frac{\ell+2}{r}\right) f_{n_r,\ell+1/2}(r) = \left(\frac{\partial}{\partial r} - \frac{\ell-1}{r}\right) f_{n_r,\ell-1/2}(r)$$

• spin symmetry is well preserved in antinucleon spectra (X.T. He, S.G. Zhou, J. Meng, E.G. Zhao and W. Scheid, Eur. Phys. J. A 28, 265 - 269 (2006))

-0.0002

-0.0002 -0.0004 -0.0004

Spin symmetry

- g p3/2

0.003

components of the \bar{p} wave function in ¹⁶O_{p̄} TM2, calculated dynamically.

- f p3/2

Fig.6: Upper (g) and lower (f) components of the \bar{p} wave function in ¹⁶O_{p̄} TM2, calculated dynamically with \bar{p} absorption in the nucleus.

Extension of conventional RMF model

- standard RMF models scaling factor for antiproton couplings
- Non-linear derivative (NLD) model for nuclear matter
 (T. Gaitanos, M. Kaskulov, Nucl. Phys. A 899, 133 169 (2013))
- NLD model applied to antiproton interaction in nuclear matter \rightarrow much shallower Re $V_{\overline{p}}$ for the G-parity (T. Gaitanos, M. Kaskulov, H. Lenske, Phys. Lett. B 703, 193-198 (2011))
- application of the NLD model to finite nuclei

Conclusion

- large polarization effects of the nuclear core due to \bar{p} confirmed
- \bar{p} absorption in a nucleus \bar{p} widths are suppressed due to the phase space reduction, but still remain large for potentials consistent with \bar{p} —atom data
- significant contribution from $\vec{p}_{\bar{p}}$ and \vec{p}_N to $\Gamma_{\bar{p}}$
- spin symmetry in \bar{p} spectrum is preserved even if the polarization effects in the nucleus and the \bar{p} absorption are taken into account
- further study of the \bar{p} interaction with nuclei is needed