Experimental techniques for in-ring reaction studies with EXL

Mirko von Schmid for the EXL collaboration
The EXL project

- “EXotic nuclei studied in Light-ion induced reactions at storage rings”
- Direct reactions of exotic beams in inverse kinematics on an internal gas-jet target
 - Measurements at very low momentum transfer
 - Kinematically complete measurement
The EXL project

- "EXotic nuclei studied in Light-ion induced reactions at storage rings"

- **Direct reactions** of exotic beams in **inverse kinematics** on an internal gas-jet target
 - Measurements at very **low momentum transfer**
 - Kinematically complete measurement

- First EXL experiment with radioactive beam at the ESR, GSI:
 - 20Ne, 58Ni and 56Ni beams
 - 4He and 2H gas-jet targets
 - 56Ni(p,p) **luminosity**: $2 \cdot 10^{26}$ particles s cm$^{-2}$

- $8 \cdot 10^4$ 56Ni ions/spill from FRS

Picture: Phys. Scr. T156 (2013) 014016
Experimental setup at the ESR

Technical drawings: M. Lindemulder, KVI-CART
Experimental setup at the ESR

- **DSSD**: 128 × 64 strips, (6 × 6) cm², 285 µm thick
- **Si(Li)**: 8 pads, (8 × 4) cm², 6.5 mm thick
- **Active vacuum barrier**

 B. Streicher et al., Nucl. Instr. and Meth. A 654, 604 (2011).
Experimental setup at the ESR

- Ion beam
- Gas-jet
- Target
- Tantalum plate (2 mm thick)
- 1 mm slit
- 2 mm slit
- Piezo positioners

Aperture to improve angular resolution

Technical drawings: M. Lindemulder, KVI-CART
Thin-window design:
- p^+-implant on p-side: 500 Å thick
- Al metallization: 600 Å thick
- thin SiO$_2$ layer: 500 Å thick

Compensation of different energy losses for low-energy particles
DSSDs for EXL
UHV Compatible PCB and Readout

- DSSD on AlN PCB
 - “clean” UHV side with sealed feedthroughs; no soldering, no connectors etc.
 - Readout of all 192 strips from the back side

- Reversible contacting via spring pins in custom made connector made of PEEK
 - heat resistant till 160°C at least
Vacuum concept

First successful tests using (2 × 2) cm² DSSD prototype
Artificial leak on HV side (needle valve)
Vacuum separation by 6 orders of magnitude difference achieved

B. Streicher et al., Nucl. Instr. and Meth. A 654, 604 (2011)
Elastic proton scattering
56Ni(p,p) at 390 MeV/u

Technical drawings: M. Lindemulder, KVI-CART
Elastic proton scattering
$^{56}\text{Ni(p,p)}$ at 390 MeV/u with 1 mm aperture
Data taken with the 2nd DSSD

$\theta_{\text{lab}} = 32.5^\circ$

Technical drawings: M. Lindemulder, KVI-CART
Inelastic alpha scattering
$^{58}\text{Ni}(\alpha, \alpha')$ at 100 MeV/u

Analysis by J.C. Zamora, TU Darmstadt
Inelastic alpha scattering
$^{58}\text{Ni}(\alpha, \alpha')$ at 100 MeV/u

Experiment
$\theta_{\text{lab}} = 27.5 \text{ deg}$

Simulation
$\theta_{\text{lab}} = 27.5 \text{ deg}$

Experiment
$\theta_{\text{lab}} = 37.5 \text{ deg}$

Simulation
$\theta_{\text{lab}} = 37.5 \text{ deg}$

Analysis by J.C. Zamora, TU Darmstadt
Transfer reaction $^{20}\text{Ne}(p, d)^{19}\text{Ne}$ at 50 MeV/u

Analysis by J.C. Zamora, TU Darmstadt
Conclusion

- First successful nuclear reaction experiment with stored exotic beams ever.

- Feasibility of EXL concept proven.
 - Principle of vacuum separation works.
 - Allows to study nuclear reactions with stored beams at low momentum transfer.

- Differential cross section of 56Ni(p,p) measured for the first time.

- Nuclear matter distribution and RMS radius of 56Ni: $\langle r^2 \rangle^{1/2} = (3.76 \pm 0.08)$ fm

- Successfully demonstrated the possibility to study giant resonances and transfer reactions with EXL.
Conclusion

- First successful nuclear reaction experiment with stored exotic beams ever.

- Feasibility of EXL concept proven.
 - Principle of vacuum separation works.
 - Allows to study nuclear reactions with stored beams at low momentum transfer.

- Differential cross section of 56Ni(p,p) measured for the first time.
 - Nuclear matter distribution and RMS radius of 56Ni: $\langle r_m^2 \rangle^{1/2} = (3.76 \pm 0.08)$ fm
Conclusion

▶ First successful nuclear reaction experiment with stored exotic beams ever.

▶ Feasibility of EXL concept proven.
 ▶ Principle of vacuum separation works.
 ▶ Allows to study nuclear reactions with stored beams at low momentum transfer.

▶ Differential cross section of $^{56}\text{Ni}(p,p)$ measured for the first time.
 ▶ Nuclear matter distribution and RMS radius of ^{56}Ni: $\langle r_m^2 \rangle^{1/2} = (3.76 \pm 0.08) \text{ fm}$

▶ Successfully demonstrated the possibility to study giant resonances and transfer reactions with EXL.
Outlook

- Upgraded detector setup covering a substantially larger solid angle is planned.
 - Detectors placed directly in the UHV.

- Future experiments envisaged at GSI and at FAIR using CRYRING, ESR and HESR.

Technical drawings: M. Lindemulder, KVI-CART
Thank you for your attention

S. Bagchi¹, S. Bönig², M. Csatlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵, T. Furuno⁶, H. Geissel⁴, R. Gernhäuser⁷, M. N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹, O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴, Yu. A. Litvinov⁴, M. Mahjour-Shafiee¹,⁸, M. Mutterer⁴, D. Nagae⁹, M.A. Najafi¹, C. Nociforo⁴, F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴, B. Streicher²,⁴, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka¹⁰, H. Weick⁴, J. S. Winfield⁴, D. Winters⁴, P. J. Woods¹¹, T. Yamaguchi¹², K. Yue²,⁴,¹³, J.C. Zamora², J. Zenihiro¹⁰

¹ KVI-CART, Groningen
² Technische Universität Darmstadt
³ ATOMKI, Debrecen
⁴ GSI, Darmstadt
⁵ Ioffe Physico-Technical Institute, St.Petersburg
⁶ Kyoto University
⁷ Technische Universität München
⁸ University of Tehran
⁹ University of Tsukuba
¹⁰ RIKEN Nishina Center
¹¹ The University of Edinburgh
¹² Saitama University
¹³ Institute of Modern Physics, Lanzhou

This work was supported by BMBF (06DA9040I, 05P12RDFN8, 05P15RDFN1), the European Commission within the Seventh Framework Programme through IA-ENSAR (contract no. RII3-CT-2010-262010), HIC for FAIR, GSI-RUG/KVI collaboration agreement and TU Darmstadt-GSI cooperation contract.