Relativistic Chiral EFT with baryons: Recent developments and future prospects.

Jose Manuel Alarcón

Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn

• Our knowledge of nuclear interactions is involved in many experimental programs.

- Our knowledge of nuclear interactions is involved in many experimental programs.
 - Neutron polarizabilities

- Our knowledge of nuclear interactions is involved in many experimental programs.
 - Neutron polarizabilities
 - Neutrino detection

- Our knowledge of nuclear interactions is involved in many experimental programs.
 - Neutron polarizabilities
 - Neutrino detection
 - Dark Matter detection

- Our knowledge of nuclear interactions is involved in many experimental programs.
 - Neutron polarizabilities
 - Neutrino detection
 - Dark Matter detection
- In the era of precision it is important to have a good control over nuclear corrections (uncertainties).

- Our knowledge of nuclear interactions is involved in many experimental programs.
 - Neutron polarizabilities
 - Neutrino detection
 - Dark Matter detection
- In the era of precision it is important to have a good control over nuclear corrections (uncertainties).
- Chiral EFT with nucleons provides a theoretical tool to attack this problem in a model-independent way.

- Our knowledge of nuclear interactions is involved in many experimental programs.
 - Neutron polarizabilities
 - Neutrino detection
 - Dark Matter detection
- In the era of precision it is important to have a good control over nuclear corrections (uncertainties).
- Chiral EFT with nucleons provides a theoretical tool to attack this problem in a model-independent way.
 - Based on the fundamental symmetries of the strong interactions at low energies Chiral Symmetry

- Our knowledge of nuclear interactions is involved in many experimental programs.
 - Neutron polarizabilities
 - Neutrino detection
 - Dark Matter detection
- In the era of precision it is important to have a good control over nuclear corrections (uncertainties).
- Chiral EFT with nucleons provides a theoretical tool to attack this problem in a model-independent way.
 - Based on the fundamental symmetries of the strong interactions at low energies —→ Chiral Symmetry
 - Systematically improbable

- Our knowledge of nuclear interactions is involved in many experimental programs.
 - Neutron polarizabilities
 - Neutrino detection
 - Dark Matter detection
- In the era of precision it is important to have a good control over nuclear corrections (uncertainties).
- Chiral EFT with nucleons provides a theoretical tool to attack this problem in a model-independent way.
 - Based on the fundamental symmetries of the strong interactions at low energies —→ Chiral Symmetry
 - Systematically improbable
 - Provides a way to asses systematically the uncertainties of the calculation

 ${}^{\bullet}$ One important part of the nuclear forces is given by the πN interaction

• One important part of the nuclear forces is given by the πN interaction \longrightarrow Determines the long-range part of the NN forces.

• One important part of the nuclear forces is given by the πN interaction — Determines the long-range part of the NN forces.

LO: NLO: NNLO:

ullet πN at low energies is per se very interesting

• One important part of the nuclear forces is given by the πN interaction — Determines the long-range part of the NN forces.

LO: NLO: NNLO:

• πN at low energies is per se very interesting $\longrightarrow \sigma_{\pi N}$

• One important part of the nuclear forces is given by the πN interaction — Determines the long-range part of the NN forces.

- πN at low energies is per se very interesting $\longrightarrow \sigma_{\pi N}$
- \bullet $\sigma_{\pi N}$:

• One important part of the nuclear forces is given by the πN interaction — Determines the long-range part of the NN forces.

- πN at low energies is per se very interesting $\longrightarrow \sigma_{\pi N}$
- $\bullet \ \sigma_{\pi N}$:
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]

• One important part of the nuclear forces is given by the πN interaction — Determines the long-range part of the NN forces.

- πN at low energies is per se very interesting $\longrightarrow \sigma_{\pi N}$
- $\bullet \ \sigma_{\pi N}$:
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - Strangeness content of the nucleon [T.E.O. Ericson, CERN-TH-6165-91 (1991)]

• One important part of the nuclear forces is given by the πN interaction — Determines the long-range part of the NN forces.

- πN at low energies is per se very interesting $\longrightarrow \sigma_{\pi N}$
- $\bullet \ \sigma_{\pi N}$:
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - Strangeness content of the nucleon [T.E.O. Ericson, CERN-TH-6165-91 (1991)]
 - CP violation [de Vries, Merenghetti, Walker-Loud, arXiv: 1506.06247]

• One important part of the nuclear forces is given by the πN interaction \longrightarrow Determines the long-range part of the NN forces.

- πN at low energies is per se very interesting $\longrightarrow \sigma_{\pi N}$
- $\bullet \ \sigma_{\pi N}$:
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - Strangeness content of the nucleon [T. E. O. Ericson, CERN-TH-6165-91 (1991)]
 - CP violation [de Vries, Merenghetti, Walker-Loud, arXiv: 1506.06247]
 - Nuclear thermodynamics [Holt, Rho and Weise, arXiv:1411.6681]

• One important part of the nuclear forces is given by the πN interaction \longrightarrow Determines the long-range part of the NN forces.

- πN at low energies is per se very interesting $\longrightarrow \sigma_{\pi N}$
- $\bullet \ \sigma_{\pi N}$:
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - Strangeness content of the nucleon [T.E.O. Ericson, CERN-TH-6165-91 (1991)]
 - CP violation [de Vries, Merenghetti, Walker-Loud, arXiv: 1506.06247]
 - Nuclear thermodynamics [Holt, Rho and Weise, arXiv: 1411.6681]
 - Anthropic studies of carbon-based life [Epelbaum et al., PRL 110, (2013)]

• One important part of the nuclear forces is given by the πN interaction \longrightarrow Determines the long-range part of the NN forces.

LO: NLO: NNLO:

- πN at low energies is per se very interesting $\longrightarrow \sigma_{\pi N}$
- $\bullet \ \sigma_{\pi N}$:
 - Dark Matter detection [Bottino, Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]
 - Strangeness content of the nucleon [T.E.O. Ericson, CERN-TH-6165-91 (1991)]
 - CP violation [de Vries, Merenghetti, Walker-Loud, arXiv: 1506.06247]
 - Nuclear thermodynamics [Holt, Rho and Weise, arXiv:1411.6681]
 - Anthropic studies of carbon-based life [Epelbaum et al., PRL 110, (2013)]

 πN scattering is relevant for hadron and nuclear physics!

• First attempt to include baryons in $\chi \rm EFT$ [Gasser, Sainio and Svarc, NPB 307 (1988)].

- First attempt to include baryons in $\chi \rm EFT$ [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.

- First attempt to include baryons in χEFT [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.

- First attempt to include baryons in χEFT [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.
 - Analiticity problems in the subthreshold [Bernard, Kaiser & Meißner, IJMP E 255 (1991)].

- First attempt to include baryons in $\chi \rm EFT$ [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.
 - Analiticity problems in the subthreshold [Bernard, Kaiser & Meißner, IJMP E 255 (1991)].
- IR [Becher and Leutwyler, EPJ C 9 (1999)]: Modifies nucleon propagator to recover the counting:

- First attempt to include baryons in χEFT [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.
 - Analiticity problems in the subthreshold [Bernard, Kaiser & Meißner, IJMP E 255 (1991)].
- IR [Becher and Leutwyler, EP] C 9 (1999)]: Modifies nucleon propagator to recover the counting:
 - Subthreshold OK, but introduces unphysical cuts in the physical region.

- First attempt to include baryons in χEFT [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.
 - Analiticity problems in the subthreshold [Bernard, Kaiser & Meißner, IJMP E 255 (1991)].
- IR [Becher and Leutwyler, EPJ C 9 (1999)]: Modifies nucleon propagator to recover the counting:
 - Subthreshold OK, but introduces unphysical cuts in the physical region.
 - Fails in connecting the physical and subthreshold region.

- First attempt to include baryons in χEFT [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.
 - Analiticity problems in the subthreshold [Bernard, Kaiser & Meißner, IJMP E 255 (1991)].
- IR [Becher and Leutwyler, EP] C 9 (1999)]: Modifies nucleon propagator to recover the counting:
 - Subthreshold OK, but introduces unphysical cuts in the physical region.
 - Fails in connecting the physical and subthreshold region.

"We conclude that dispersive methods are required to obtain a reliable description of the scattering amplitude at low energies. With this in mind, we propose a system of integral equations that is analogous to the Roy equations for πN scattering [...]."

Becher and Leutwyler, [HEP (2001)

- First attempt to include baryons in χEFT [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.
 - Analiticity problems in the subthreshold [Bernard, Kaiser & Meißner, IJMP E 255 (1991)].
- IR [Becher and Leutwyler, EPJ C 9 (1999)]: Modifies nucleon propagator to recover the counting:
 - Subthreshold OK, but introduces unphysical cuts in the physical region.
 - Fails in connecting the physical and subthreshold region.

"We conclude that dispersive methods are required to obtain a reliable description of the scattering amplitude at low energies. With this in mind, we propose a system of integral equations that is analogous to the Roy equations for πN scattering [...]."

Becher and Leutwyler, JHEP (2001)

• EOMS [Gegelia and Japaridze, PRD 60 (1999)] [Fuchs, Gegelia, Japaridze and Scherer, PRD 68 (2003)]:

- First attempt to include baryons in $\chi \rm EFT$ [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.
 - Analiticity problems in the subthreshold [Bernard, Kaiser & Meißner, IJMP E 255 (1991)].
- IR [Becher and Leutwyler, EPJ C 9 (1999)]: Modifies nucleon propagator to recover the counting:
 - Subthreshold OK, but introduces unphysical cuts in the physical region.
 - Fails in connecting the physical and subthreshold region.

"We conclude that dispersive methods are required to obtain a reliable description of the scattering amplitude at low energies. With this in mind, we propose a system of integral equations that is analogous to the Roy equations for πN scattering [...]."

Becher and Leutwyler, JHEP (2001)

- EOMS [Gegelia and Japaridze, PRD 60 (1999)] [Fuchs, Gegelia, Japaridze and Scherer, PRD 68 (2003)]:
 - The counting can be recovered via LECs redefinition.

- First attempt to include baryons in χEFT [Gasser, Sainio and Svarc, NPB 307 (1988)].
 - New heavy scale (nucleon mass) seems to break the standard counting.
- HB [Jenkins and Manohar, PLB 255 (1991)]: Non-relativistic $1/m_N$ expansion.
 - Analiticity problems in the subthreshold [Bernard, Kaiser & Meißner, IJMP E 255 (1991)].
- IR [Becher and Leutwyler, EPJ C 9 (1999)]: Modifies nucleon propagator to recover the counting:
 - Subthreshold OK, but introduces unphysical cuts in the physical region.
 - Fails in connecting the physical and subthreshold region.

"We conclude that dispersive methods are required to obtain a reliable description of the scattering amplitude at low energies. With this in mind, we propose a system of integral equations that is analogous to the Roy equations for πN scattering [...]."

Becher and Leutwyler, JHEP (2001)

- EOMS [Gegelia and Japaridze, PRD 60 (1999)] [Fuchs, Gegelia, Japaridze and Scherer, PRD 68 (2003)]:
 - The counting can be recovered via LECs redefinition.
 - Advantage Keeps the good analytical behavior of the GSS formulation.

 πN scattering with relativistic chiral EFT

πN scattering with relativistic chiral EFT

• We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.

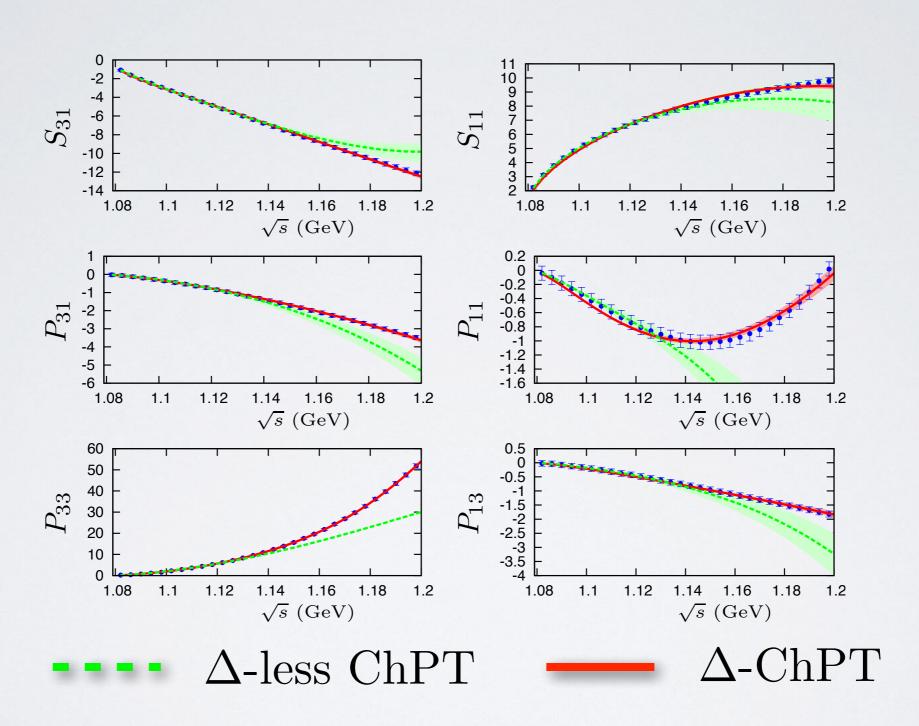
πN scattering with relativistic chiral EFT

- We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.
- We studied also the impact of the $\Delta(1232)$ as an explicit degree of freedom in the formulation.

- We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.
- We studied also the impact of the $\Delta(1232)$ as an explicit degree of freedom in the formulation.
 - Delta-pole is close to the πN threshold \longrightarrow Its inclusion as a dynamical degree of freedom is important for a proper separation of scales.

- We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.
- We studied also the impact of the $\Delta(1232)$ as an explicit degree of freedom in the formulation.
 - Delta-pole is close to the πN threshold \longrightarrow Its inclusion as a dynamical degree of freedom is important for a proper separation of scales.
 - We use the consistent formulation of chiral Lagrangians [Pascalutsa and Timmermans PRC 60 (1999); Pascalutsa, PLB 503 (2001)] together with the δ -counting.

- We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.
- We studied also the impact of the $\Delta(1232)$ as an explicit degree of freedom in the formulation.
 - Delta-pole is close to the πN threshold \longrightarrow Its inclusion as a dynamical degree of freedom is important for a proper separation of scales.
 - We use the consistent formulation of chiral Lagrangians [Pascalutsa and Timmermans PRC 60 (1999); Pascalutsa, PLB 503 (2001)] together with the δ -counting.
- We perform a calculation of the amplitude up to $\mathcal{O}(p^3)$.


- We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.
- We studied also the impact of the $\Delta(1232)$ as an explicit degree of freedom in the formulation.
 - Delta-pole is close to the πN threshold \longrightarrow Its inclusion as a dynamical degree of freedom is important for a proper separation of scales.
 - We use the consistent formulation of chiral Lagrangians [Pascalutsa and Timmermans PRC 60 (1999); Pascalutsa, PLB 503 (2001)] together with the δ -counting.
- We perform a calculation of the amplitude up to $\mathcal{O}(p^3)$.
- To fix the LECs, we consider three different sets of PWAs:

- We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.
- We studied also the impact of the $\Delta(1232)$ as an explicit degree of freedom in the formulation.
 - Delta-pole is close to the πN threshold \longrightarrow Its inclusion as a dynamical degree of freedom is important for a proper separation of scales.
 - We use the consistent formulation of chiral Lagrangians [Pascalutsa and Timmermans PRC 60 (1999); Pascalutsa, PLB 503 (2001)] together with the δ -counting.
- We perform a calculation of the amplitude up to $\mathcal{O}(p^3)$.
- To fix the LECs, we consider three different sets of PWAs:
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]

- We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.
- We studied also the impact of the $\Delta(1232)$ as an explicit degree of freedom in the formulation.
 - Delta-pole is close to the πN threshold \longrightarrow Its inclusion as a dynamical degree of freedom is important for a proper separation of scales.
 - We use the consistent formulation of chiral Lagrangians [Pascalutsa and Timmermans PRC 60 (1999); Pascalutsa, PLB 503 (2001)] together with the δ -counting.
- We perform a calculation of the amplitude up to $\mathcal{O}(p^3)$.
- To fix the LECs, we consider three different sets of PWAs:
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]
 - George Washington University (WI08) [Workman, et al. . PRC 86 ,(2012)]

- We applied the EOMS approach to the study of πN scattering at low energies for first time in the literature.
- We studied also the impact of the $\Delta(1232)$ as an explicit degree of freedom in the formulation.
 - Delta-pole is close to the πN threshold \longrightarrow Its inclusion as a dynamical degree of freedom is important for a proper separation of scales.
 - We use the consistent formulation of chiral Lagrangians [Pascalutsa and Timmermans PRC 60 (1999); Pascalutsa, PLB 503 (2001)] together with the δ -counting.
- We perform a calculation of the amplitude up to $\mathcal{O}(p^3)$.
- To fix the LECs, we consider three different sets of PWAs:
 - Karlsruhe-Helsinki (KA85) [Koch, NPA 448, (1986); Koch and Pietarinen, NPA 336, (1980)]
 - George Washington University (WI08) [Workman, et al. . PRC 86 ,(2012)]
 - Zürich group (EM06) [Matsinos, Woolcock, Oades, Rasche and Gashi, NPA 95 (2006)]

Fits to WI08

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Threshold parameters:

Partial	KA85	WI08	EM06	KA85	WI08	EM06
Wave	Δ -ChPT	$\Delta ext{-ChPT}$	$\Delta ext{-ChPT}$			
a_{0+}^{+}	-1.1(1.0)	-0.12(33)	0.23(20)	-0.8	-0.10(12)	0.22(12)
a_{0+}^{-}	8.8(5)	8.33(44)	7.70(8)	9.2	8.83(5)	7.742(61)
$a_{S_{31}}$	-10.0(1.1)	-8.5(6)	-7.47(22)	-10.0(4)	-8.4	-7.52(16)
$a_{S_{11}}$	16.6(1.5)	16.6(9)	15.63(26)	17.5(3)	17.1	15.71(13)
$a_{P_{31}}$	-4.15(35)	-3.89(35)	-4.10(9)	-4.4(2)	-3.8	-4.176(80)
$a_{P_{11}}$	-8.4(5)	-7.5(1.0)	-8.43(18)	-7.8(2)	-5.8	-7.99(16)
$a_{P_{33}}$	22.69(30)	21.4(5)	20.89(9)	21.4(2)	19.4	21.00(20)
$a_{P_{13}}$	-3.00(32)	-2.84(31)	-3.09(8)	-3.0(2)	-2.3	-3.159(67)

Threshold parameters:

Partial	KA85	WI08	EM06	KA85	WI08	EM06
Wave	Δ -ChPT	$\Delta ext{-ChPT}$	Δ -ChPT			
a_{0+}^{+}	-1.1(1.0)	-0.12(33)	0.23(20)	-0.8	-0.10(12)	0.22(12)
a_{0+}^{-}	8.8(5)	8.33(44)	7.70(8)	9.2	8.83(5)	7.742(61)
$a_{S_{31}}$	-10.0(1.1)	-8.5(6)	-7.47(22)	-10.0(4)	-8.4	-7.52(16)
$a_{S_{11}}$	16.6(1.5)	16.6(9)	15.63(26)	17.5(3)	17.1	15.71(13)
$a_{P_{31}}$	-4.15(35)	-3.89(35)	-4.10(9)	-4.4(2)	-3.8	-4.176(80)
$a_{P_{11}}$	-8.4(5)	-7.5(1.0)	-8.43(18)	-7.8(2)	-5.8	-7.99(16)
$a_{P_{33}}$	22.69(30)	21.4(5)	20.89(9)	21.4(2)	19.4	21.00(20)
$a_{P_{13}}$	-3.00(32)	-2.84(31)	-3.09(8)	-3.0(2)	-2.3	-3.159(67)

• Pion-nucleon coupling (d_{18}) :

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	4.5(7)%	2.1(1)%	0.2(1.0)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.46(9)	13.15(1)	12.90(12)

Threshold parameters:

Partial	KA85	WI08	EM06	KA85	WI08	EM06
Wave	Δ -ChPT	$\Delta ext{-ChPT}$	Δ -ChPT			
a_{0+}^{+}	-1.1(1.0)	-0.12(33)	0.23(20)	-0.8	-0.10(12)	0.22(12)
a_{0+}^{-}	8.8(5)	8.33(44)	7.70(8)	9.2	8.83(5)	7.742(61)
$a_{S_{31}}$	-10.0(1.1)	-8.5(6)	-7.47(22)	-10.0(4)	-8.4	-7.52(16)
$a_{S_{11}}$	16.6(1.5)	16.6(9)	15.63(26)	17.5(3)	17.1	15.71(13)
$a_{P_{31}}$	-4.15(35)	-3.89(35)	-4.10(9)	-4.4(2)	-3.8	-4.176(80)
$a_{P_{11}}$	-8.4(5)	-7.5(1.0)	-8.43(18)	-7.8(2)	-5.8	-7.99(16)
$a_{P_{33}}$	22.69(30)	21.4(5)	20.89(9)	21.4(2)	19.4	21.00(20)
$a_{P_{13}}$	-3.00(32)	-2.84(31)	-3.09(8)	-3.0(2)	-2.3	-3.159(67)

• Pion-nucleon coupling (d_{18}) :

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	4.5(7)%	2.1(1)%	0.2(1.0)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.46(9)	13.15(1)	12.90(12)

• Sigma-term (c_1) :

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
$\sigma_{\pi N} \text{ (MeV)}$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

Threshold parameters:

Partial	KA85	WI08	EM06	KA85	WI08	EM06
Wave	Δ -ChPT	$\Delta ext{-ChPT}$	Δ -ChPT			
a_{0+}^{+}	-1.1(1.0)	-0.12(33)	0.23(20)	-0.8	-0.10(12)	0.22(12)
a_{0+}^{-}	8.8(5)	8.33(44)	7.70(8)	9.2	8.83(5)	7.742(61)
$a_{S_{31}}$	-10.0(1.1)	-8.5(6)	-7.47(22)	-10.0(4)	-8.4	-7.52(16)
$a_{S_{11}}$	16.6(1.5)	16.6(9)	15.63(26)	17.5(3)	17.1	15.71(13)
$a_{P_{31}}$	-4.15(35)	-3.89(35)	-4.10(9)	-4.4(2)	-3.8	-4.176(80)
$a_{P_{11}}$	-8.4(5)	-7.5(1.0)	-8.43(18)	-7.8(2)	-5.8	-7.99(16)
$a_{P_{33}}$	22.69(30)	21.4(5)	20.89(9)	21.4(2)	19.4	21.00(20)
$a_{P_{13}}$	-3.00(32)	-2.84(31)	-3.09(8)	-3.0(2)	-2.3	-3.159(67)

• Pion-nucleon coupling (d_{18}) :

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	4.5(7)%	2.1(1)%	0.2(1.0)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.46(9)	13.15(1)	12.90(12)

• Sigma-term (c_1) :

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
$\sigma_{\pi N} \text{ (MeV)}$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

• Recover dispersive results in the subthreshold region (subthreshold expansion)!! [Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Threshold parameters:

Partial	KA85	WI08	EM06	KA85	WI08	EM06
Wave	Δ -ChPT	$\Delta ext{-ChPT}$	Δ -ChPT			
a_{0+}^{+}	-1.1(1.0)	-0.12(33)	0.23(20)	-0.8	-0.10(12)	0.22(12)
a_{0+}^{-}	8.8(5)	8.33(44)	7.70(8)	9.2	8.83(5)	7.742(61)
$a_{S_{31}}$	-10.0(1.1)	-8.5(6)	-7.47(22)	-10.0(4)	-8.4	-7.52(16)
$a_{S_{11}}$	16.6(1.5)	16.6(9)	15.63(26)	17.5(3)	17.1	15.71(13)
$a_{P_{31}}$	-4.15(35)	-3.89(35)	-4.10(9)	-4.4(2)	-3.8	-4.176(80)
$a_{P_{11}}$	-8.4(5)	-7.5(1.0)	-8.43(18)	-7.8(2)	-5.8	-7.99(16)
$a_{P_{33}}$	22.69(30)	21.4(5)	20.89(9)	21.4(2)	19.4	21.00(20)
$a_{P_{13}}$	-3.00(32)	-2.84(31)	-3.09(8)	-3.0(2)	-2.3	-3.159(67)

• Pion-nucleon coupling (d_{18}) :

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	4.5(7)%	2.1(1)%	0.2(1.0)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.46(9)	13.15(1)	12.90(12)

• Sigma-term (c_1) :

	KA85	WI08	EM06	KA85	WI08	EM06
	Δ -ChPT	Δ -ChPT	Δ -ChPT			
$\sigma_{\pi N} \text{ (MeV)}$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

Recover dispersive results in the subthreshold region

(subt

Solves the problem found by Becher and Leutwyler!

• The sigma-term is a crucial quantity in hadron and nuclear physics.

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

• The sigma-term is a crucial quantity in hadron and nuclear physics.

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

• It has an special interest for studies of direct detection of DM [Bottino,

Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]

• The sigma-term is a crucial quantity in hadron and nuclear physics.

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

• It has an special interest for studies of direct detection of DM [Bottino,

Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77, (2008)]

Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter

John Ellis,^{1,*} Keith A. Olive,^{2,†} and Christopher Savage^{2,‡}

lute values. This uncertainty is already impacting the interpretations of experimental searches for cold dark matter. We plead for an experimental campaign to determine better the π -nucleon σ term. Uncertainties in the spin content of the proton affect significantly, but less strongly, the calculation of rates used in indirect searches.

• The sigma-term is a crucial quantity in hadron and nuclear physics.

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

• It has an special interest for studies of direct detection of DM [Bottino,

Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K.A. Olive and C. Savage, Phys. Rev. D 77, (2008)]

Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter

John Ellis,^{1,*} Keith A. Olive,^{2,†} and Christopher Savage^{2,‡}

lute values. This uncertainty is already impacting the interpretations of experimental searches for cold dark matter. We plead for an experimental campaign to determine better the π -nucleon σ term. Uncertainties in the spin content of the proton affect significantly, but less strongly, the calculation of rates used in indirect searches.

• The sigma-term is a crucial quantity in hadron and nuclear physics.

$$\sigma_{\pi N} = \frac{\hat{m}}{2m_N} \langle N | (\bar{u}u + \bar{d}d) | N \rangle$$

• It has an special interest for studies of direct detection of DM [Bottino,

Donato, Fornengo and Scopel, Astropart. Phys. 13, (2000); Astropart. Phys. 18, (2002)] [J. R. Ellis, K. A. Olive and C. Savage, Phys. Rev. D 77, (2008)]

Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter

John Ellis,^{1,*} Keith A. Olive,^{2,†} and Christopher Savage^{2,‡}

lute values. This uncertainty is already impacting the interpretations of experimental searches for cold dark matter. We plead for an experimental campaign to determine better the π -nucleon σ term. Uncertainties in the spin content of the proton affect significantly, but less strongly, the calculation of rates used in indirect searches.

• Tension between the "canonical" value and the updated evaluation:

	Gasser, Leutwyler & Sainio	GWU
$\sigma_{\pi N}$ (MeV)	45(8)	64(7)

J. M. Alarcón (HISKP Bonn)

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(\nu = 0, t = 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

• Traditionally, has been extracted using the Cheng-Dashen Theorem:

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(\nu = 0, t = 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

• In Chiral EFT we have more possibilities:

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(\nu = 0, t = 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

- In Chiral EFT we have more possibilities:
 - Scalar form factor of the nucleon.

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(\nu = 0, t = 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

- In Chiral EFT we have more possibilities:
 - Scalar form factor of the nucleon.
 - Using the Hellmann-Feynman Theorem: $\sigma_{\pi N} = \hat{m} \frac{\partial m_N}{\partial \hat{m}}$

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(\nu = 0, t = 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

- In Chiral EFT we have more possibilities:
 - Scalar form factor of the nucleon.
 - Using the Hellmann-Feynman Theorem: $\sigma_{\pi N} = \hat{m} \frac{\partial m_N}{\partial \hat{m}}$
 - Both give, in relativistic chiral EFT (up to $\mathcal{O}(p^3)$):

$$\sigma_{\pi N} = -4c_1 M_{\pi}^2 - \frac{3g_A^2 M_{\pi}^3}{16\pi^2 f_{\pi}^2 m_N} \left(\frac{3m_N^2 - M_{\pi}^2}{\sqrt{4m_N^2 - M_{\pi}^2}} \arccos \frac{M_{\pi}}{2m_N} + M_{\pi} \log \frac{M_{\pi}}{m_N} \right)$$

• Traditionally, has been extracted using the Cheng-Dashen Theorem:

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(\nu = 0, t = 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

- In Chiral EFT we have more possibilities:
 - Scalar form factor of the nucleon.
 - Using the Hellmann-Feynman Theorem: $\sigma_{\pi N} = \hat{m} \frac{\partial m_N}{\partial \hat{m}}$
 - Both give, in relativistic chiral EFT (up to $\mathcal{O}(p^3)$):

$$\sigma_{\pi N} = -4c_1 M_{\pi}^2 - \frac{3g_A^2 M_{\pi}^3}{16\pi^2 f_{\pi}^2 m_N} \left(\frac{3m_N^2 - M_{\pi}^2}{\sqrt{4m_N^2 - M_{\pi}^2}} \arccos \frac{M_{\pi}}{2m_N} + M_{\pi} \log \frac{M_{\pi}}{m_N} \right)$$

Numerically

	$ ext{KA85} \ ext{Δ-ChPT}$	WI08 $\Delta ext{-ChPT}$	$ m EM06$ $ m \Delta ext{-}ChPT$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

• Traditionally, has been extracted using the Cheng-Dashen Theorem:

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(\nu = 0, t = 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

- In Chiral EFT we have more possibilities:
 - Scalar form factor of the nucleon.
 - Using the Hellmann-Feynman Theorem: $\sigma_{\pi N} = \hat{m} \frac{\partial m_N}{\partial \hat{m}}$
 - Both give, in relativistic chiral EFT (up to $\mathcal{O}(p^3)$):

$$\sigma_{\pi N} = -4c_1 M_{\pi}^2 - \frac{3g_A^2 M_{\pi}^3}{16\pi^2 f_{\pi}^2 m_N} \left(\frac{3m_N^2 - M_{\pi}^2}{\sqrt{4m_N^2 - M_{\pi}^2}} \arccos \frac{M_{\pi}}{2m_N} + M_{\pi} \log \frac{M_{\pi}}{m_N} \right)$$

Numerically

	${ m KA85} \ \Delta ext{-ChPT}$	$WI08$ $\Delta ext{-ChPT}$	EM06 Δ-ChPT	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

• We checked that they are consistent with the extraction by means of the Cheng-Dashed Theorem.

• Traditionally, has been extracted using the Cheng-Dashen Theorem:

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(\nu = 0, t = 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

- In Chiral EFT we have more possibilities:
 - Scalar form factor of the nucleon.
 - Using the Hellmann-Feynman Theorem: $\sigma_{\pi N} = \hat{m} \frac{\partial m_N}{\partial \hat{m}}$
 - Both give, in relativistic chiral EFT (up to $\mathcal{O}(p^3)$):

$$\sigma_{\pi N} = -4c_1 M_{\pi}^2 - \frac{3g_A^2 M_{\pi}^3}{16\pi^2 f_{\pi}^2 m_N} \left(\frac{3m_N^2 - M_{\pi}^2}{\sqrt{4m_N^2 - M_{\pi}^2}} \arccos \frac{M_{\pi}}{2m_N} + M_{\pi} \log \frac{M_{\pi}}{m_N} \right)$$

Numerically

	$ m KA85$ $ m \Delta ext{-}ChPT$	WI08 $\Delta ext{-ChPT}$	$ m EM06$ $ m \Delta ext{-}ChPT$	KA85	WI08	EM06
$\sigma_{\pi N} ({ m MeV})$	43(5)	59(4)	59(2)	45(8)	64(7)	56(9)

- We checked that they are consistent with the extraction by means of the Cheng-Dashed Theorem.
- ...but what input is reliable?

• NN scattering and π -atoms can provide valuable external information to compare with.

- •NN scattering and π -atoms can provide valuable external information to compare with.
- Goldberger-Treiman violation:

	${ m KA85} \ \Delta ext{-ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	NN [1] scattering	$\pi ext{-atoms}$ [2]
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

- NN scattering and π -atoms can provide valuable external information to compare with.
- Goldberger-Treiman violation:

	${ m KA85} \ \Delta ext{-ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	NN [1] scattering	$\pi ext{-atoms}$ [2]
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

- NN scattering and π -atoms can provide valuable external information to compare with.
- Goldberger-Treiman violation:

		${ m KA85} \ _{ m \Delta ext{-}ChPT}$ /	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	NN [1] scattering	$\pi ext{-atoms}$ [2]
	Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
ŀ	$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

 \bullet Γ_{Δ} :

	${ m KA85} \ \Delta ext{-ChPT}$	$ooknote{WI08}{\Delta ext{-ChPT}}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

- NN scattering and π -atoms can provide valuable external information to compare with.
- Goldberger-Treiman violation:

	${ m KA85} \ { m \Delta ext{-}ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	NN [1] scattering	$\pi ext{-atoms}$ [2]
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

 \bullet Γ_{Δ} :

	$ ext{KA85} \ ext{Δ-ChPT}$	$\begin{array}{c} WI08 \\ \Delta\text{-ChPT} \end{array}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

- NN scattering and π -atoms can provide valuable external information to compare with.
- Goldberger-Treiman violation:

	${ m KA85} \ \Delta ext{-ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	NN [1] scattering	$\pi ext{-atoms}$ [2]
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

 \bullet Γ_{Δ} :

	${ m KA85} \ \Delta ext{-ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

• a_{0+}^+

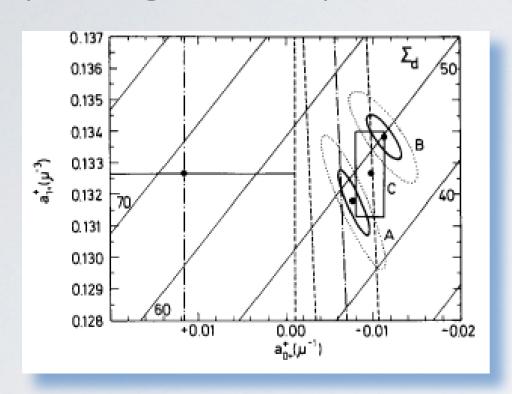
	$KA85 \ \Delta ext{-ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	π -atoms [2] $(\pi^+ p, \pi^- p)$
a_{0+}^{+} $(10^{-3}M_{\pi}^{-1})$	-11(10)	-1.2(3.3)	2.3(2.0)	-1.0(9)

[1] De Swart, Rentmeester &
Timmermans, πN Newsletter 13 (1997).
[2] Baru, Hanhart, Hoferichter, Kubis,
Nogga & Phillips, NPA 872 (2011)

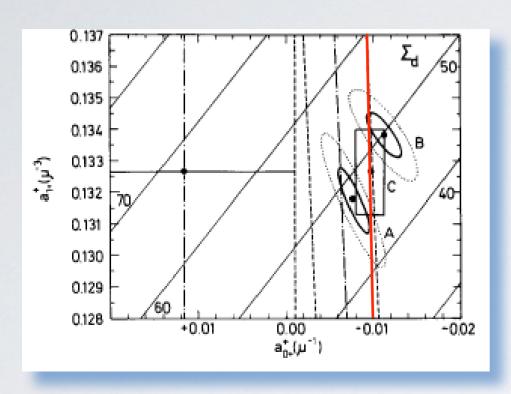
- NN scattering and π -atoms can provide valuable external information to compare with.
- Goldberger-Treiman violation:

	$ ext{KA85} \ ext{Δ-ChPT} \ /$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	NN [1] scattering	$\pi ext{-atoms}$ [2]
Δ_{GT}	5.1(8)%	1.0(2.5)%	2.0(4)%	1.9(6)%	1.9(7)%
$g_{\pi N}$	13.53(10)	13.00(31)	13.13(5)	13.12(8)	13.12(9)

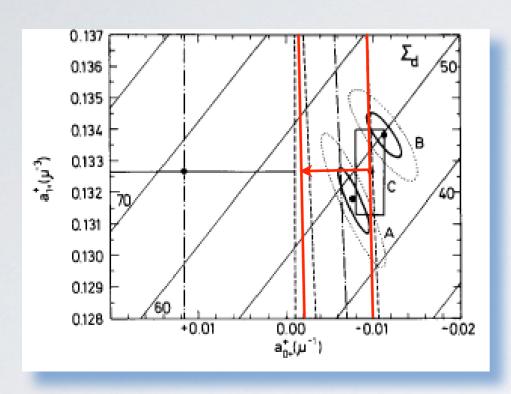
 \bullet Γ_{Δ} :

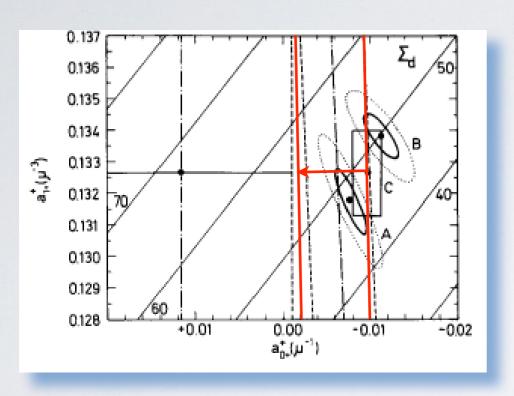

	${ m KA85} \ \Delta ext{-ChPT}$	$WI08 \ \Delta ext{-ChPT}$	${ m EM06} \ \Delta ext{-ChPT}$	PDG
$\Gamma_{\Delta} \; ({ m MeV})$	128(3)	115(3)	125(2)	117(3)

• a_{0+}^+

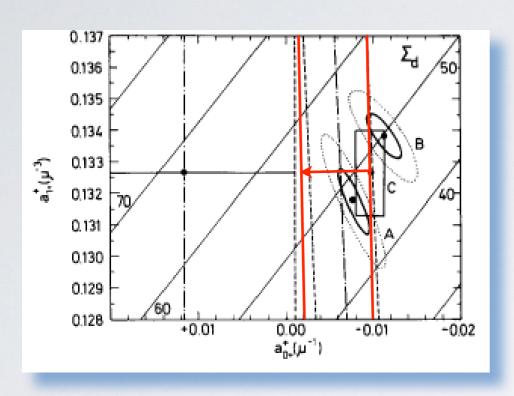

I		KA85	WI08	EM06	π -atoms [2]	
		Δ -ChPT	$\Delta ext{-ChPT}$	Δ -ChPT	$(\pi^+ p, \pi^- p)$	
	a_{0+}^{+} $(10^{-3}M_{\pi}^{-1})$	-11(10)	-1.2(3.3)	2.3(2.0)	-1.0(9)	

[1] De Swart, Rentmeester &
Timmermans, πN Newsletter 13 (1997).
[2] Baru, Hanhart, Hoferichter, Kubis,
Nogga & Phillips, NPA 872 (2011)

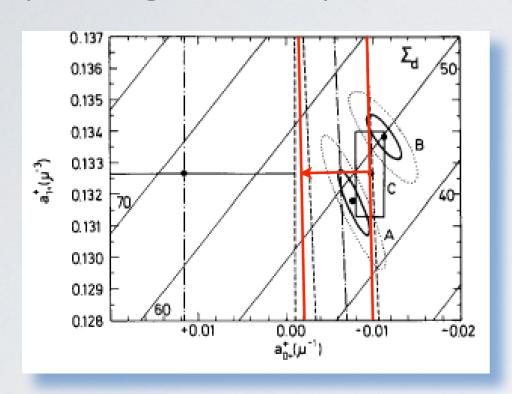

• Updating the analysis of Gasser, Leuwyler and Sainio.


• Updating the analysis of Gasser, Leuwyler and Sainio.

• Updating the analysis of Gasser, Leuwyler and Sainio.

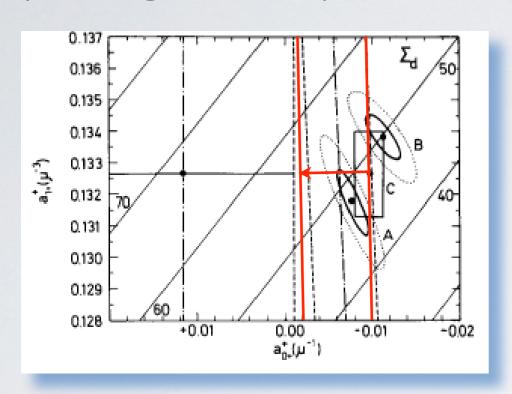


Updating the analysis of Gasser, Leuwyler and Sainio.


• New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.

Updating the analysis of Gasser, Leuwyler and Sainio.

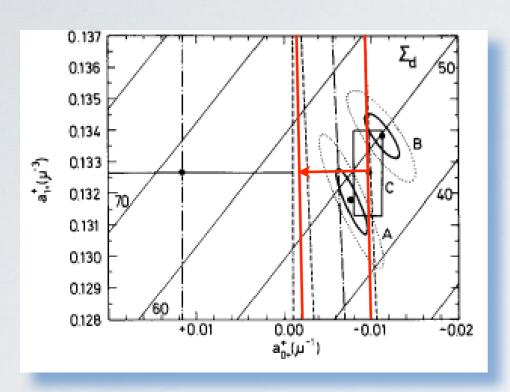
- New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.
- Same conclusions if we consider sum rules [Olsson, PLB 482 (2000)].


Updating the analysis of Gasser, Leuwyler and Sainio.

- New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.
- Same conclusions if we consider sum rules [Olsson, PLB 482 (2000)].

• Therefore:

Updating the analysis of Gasser, Leuwyler and Sainio.

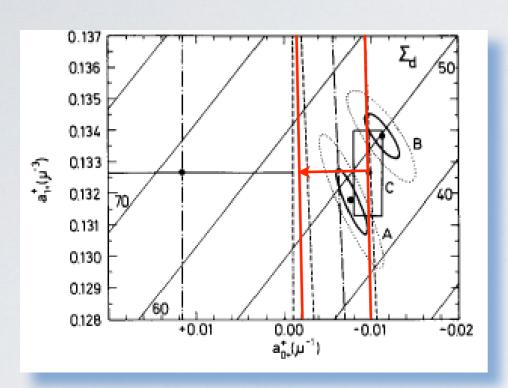


- New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.
- Same conclusions if we consider sum rules [Olsson, PLB 482 (2000)].

• Therefore:

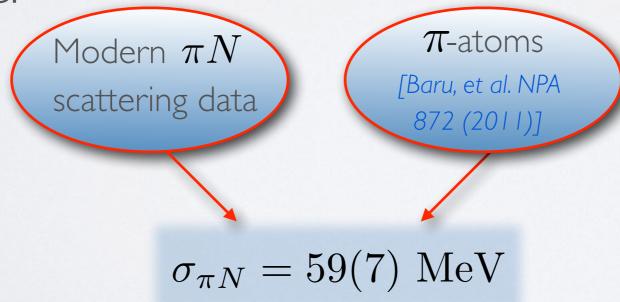
Modern πN scattering data

Updating the analysis of Gasser, Leuwyler and Sainio.

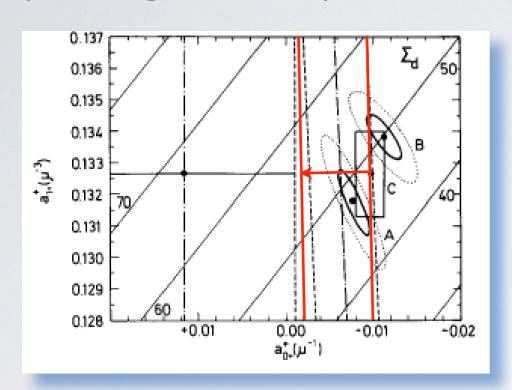

- New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.
- Same conclusions if we consider sum rules [Olsson, PLB 482 (2000)].

• Therefore:

Modern πN scattering data

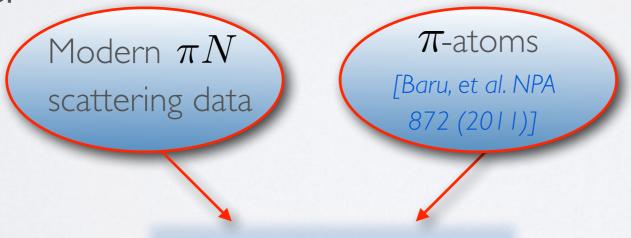

π-atoms [Baru, et al. NPA 872 (2011)]

Updating the analysis of Gasser, Leuwyler and Sainio.



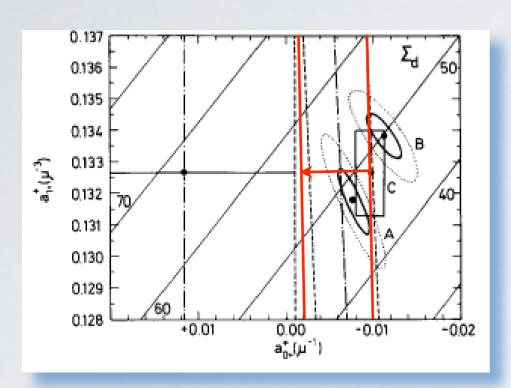
- New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.
- Same conclusions if we consider sum rules [Olsson, PLB 482 (2000)].

• Therefore:

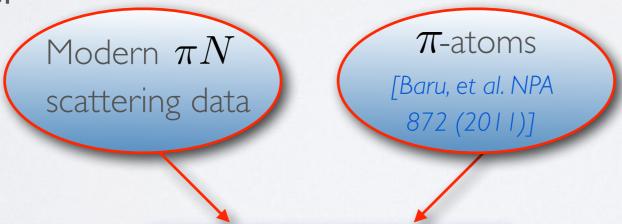


Updating the analysis of Gasser, Leuwyler and Sainio.

- New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.
- Same conclusions if we consider sum rules [Olsson, PLB 482 (2000)].

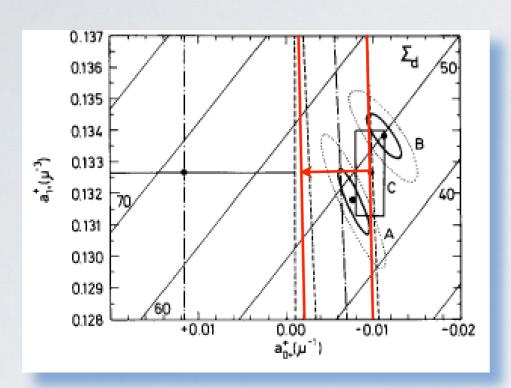

• Therefore:

 Based on modern scattering and spectroscopy data.

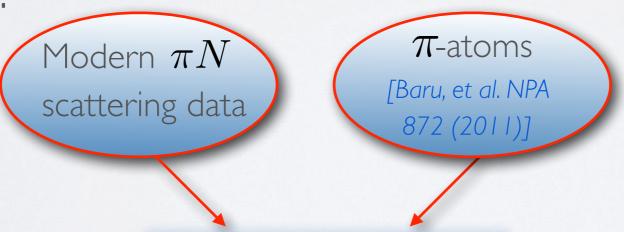

 $\sigma_{\pi N} = 59(7) \text{ MeV}$

Updating the analysis of Gasser, Leuwyler and Sainio.

- New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.
- Same conclusions if we consider sum rules [Olsson, PLB 482 (2000)].


• Therefore:

- Based on modern scattering and spectroscopy data.
- Uncertainties analysis based on EFT arguments.


 $\sigma_{\pi N} = 59(7) \text{ MeV}$

Updating the analysis of Gasser, Leuwyler and Sainio.

- New value of a_{0+}^+ points to a larger $\sigma_{\pi N}$.
- Same conclusions if we consider sum rules [Olsson, PLB 482 (2000)].

Therefore:

- Based on modern scattering and spectroscopy data.
- Uncertainties analysis based on EFT arguments.

 $\sigma_{\pi N} = 59(7) \text{ MeV} \leftarrow$

Confirmed by the Roy-Steiner analysis of [Hoferichter, et al. arXiv: 1506.04142]

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N | \bar{s}s | N \rangle$$

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \longrightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \quad \text{and} \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

• $\sigma_{\pi N}$ can be related to the strangeness content of the nucleon through $\sigma_0 \equiv \hat{m} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle / 2m_N$, since

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \longrightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \quad \text{and} \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

• σ_0 has been calculated in [Gasser, Ann, of Phys. 136, 62 (1981)] $\longrightarrow \sigma_0 = 35(5) \text{ MeV}$ and [Borasoy and Meißner, Annals Phys. 254 (1997)] $\longrightarrow \sigma_0 = 36(7) \text{ MeV}$.

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \longrightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \quad \text{and} \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

- σ_0 has been calculated in [Gasser, Ann, of Phys. 136, 62 (1981)] $\longrightarrow \sigma_0 = 35(5) \text{ MeV}$ and [Borasoy and Meißner, Annals Phys. 254 (1997)] $\longrightarrow \sigma_0 = 36(7) \text{ MeV}$.
- We updated this result with SU(3) relativistic BChPT + decuplet and obtained $\sigma_0=58(8)~{
 m MeV}$ [Alarcón, Geng, Martin Camalich and Oller, PLB 730 (2014)].

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \longrightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \quad \text{and} \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

- σ_0 has been calculated in [Gasser, Ann, of Phys. 136, 62 (1981)] $\longrightarrow \sigma_0 = 35(5) \text{ MeV}$ and [Borasoy and Meißner, Annals Phys. 254 (1997)] $\longrightarrow \sigma_0 = 36(7) \text{ MeV}$.
- We updated this result with SU(3) relativistic BChPT + decuplet and obtained $\sigma_0=58(8)~{
 m MeV}$ [Alarcón, Geng, Martin Camalich and Oller, PLB 730 (2014)].
- A new scenario emerges:

	$\sigma_{\pi N}$	σ_0	σ_s	y
Old scenario	45(8)	35(5)	130(91)	0.23
New scenario	59(7)	58(8)	16(80)	0.02(13)

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \longrightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \quad \text{and} \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

- σ_0 has been calculated in [Gasser, Ann, of Phys. 136, 62 (1981)] $\longrightarrow \sigma_0 = 35(5) \text{ MeV}$ and [Borasoy and Meißner, Annals Phys. 254 (1997)] $\longrightarrow \sigma_0 = 36(7) \text{ MeV}$.
- We updated this result with SU(3) relativistic BChPT + decuplet and obtained $\sigma_0=58(8)~{
 m MeV}$ [Alarcón, Geng, Martin Camalich and Oller, PLB 730 (2014)].
- A new scenario emerges:

	$\sigma_{\pi N}$	σ_0	σ_s	y	
Old scenario	45(8)	35(5)	130(91)	0.23	
New scenario	59(7)	58(8)	16(80)	0.02(13)	

• $\sigma_{\pi N}$ can be related to the strangeness content of the nucleon through $\sigma_0 \equiv \hat{m} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle / 2m_N$, since

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \longrightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \quad \text{and} \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

- σ_0 has been calculated in [Gasser, Ann, of Phys. 136, 62 (1981)] $\longrightarrow \sigma_0 = 35(5) \text{ MeV}$ and [Borasoy and Meißner, Annals Phys. 254 (1997)] $\longrightarrow \sigma_0 = 36(7) \text{ MeV}$.
- We updated this result with SU(3) relativistic BChPT + decuplet and obtained $\sigma_0=58(8)~{
 m MeV}$ [Alarcón, Geng, Martin Camalich and Oller, PLB 730 (2014)].
- A new scenario emerges:

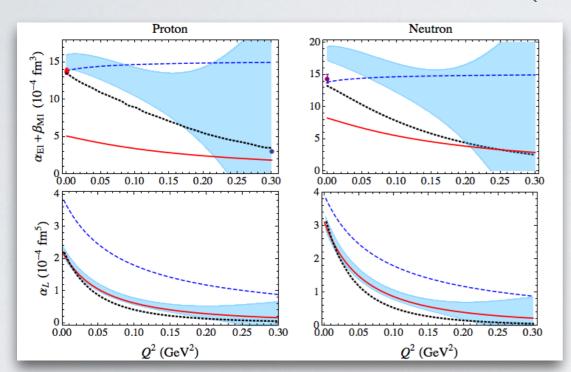
	$\sigma_{\pi N}$	σ_0	σ_s	y
Old scenario	45(8)	35(5)	130(91)	0.23
New scenario	59(7)	58(8)	16(80)	0.02(13)

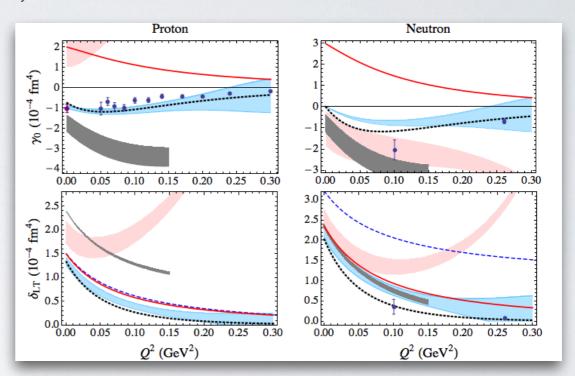
• Compatible with modern experimental information.

$$\sigma_s \equiv \frac{m_s}{2m_N} \langle N|\bar{s}s|N\rangle \quad \longrightarrow \quad \sigma_s = \frac{m_s}{2\hat{m}} (\sigma_{\pi N} - \sigma_0) \quad \text{and} \quad y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$$

- σ_0 has been calculated in [Gasser, Ann, of Phys. 136, 62 (1981)] $\longrightarrow \sigma_0 = 35(5) \text{ MeV}$ and [Borasoy and Meißner, Annals Phys. 254 (1997)] $\longrightarrow \sigma_0 = 36(7) \text{ MeV}$.
- We updated this result with SU(3) relativistic BChPT + decuplet and obtained $\sigma_0=58(8)~{
 m MeV}$ [Alarcón, Geng, Martin Camalich and Oller, PLB 730 (2014)].
- A new scenario emerges:

	$\sigma_{\pi N}$	σ_0	σ_s	y
Old scenario	45(8)	35(5)	130(91)	0.23
New scenario	59(7)	58(8)	16(80)	0.02(13)


- Compatible with modern experimental information.
- Compatible with LQCD.


$$y = 0.03(2)$$
 [Ohki et al. (2008)]
 $y = 0.135(46)$ [Alexandrou et al. (2015)]

Outreach

Outreach

- After these results:
 - Polarizabilities of the nucleon (VVCS) [Lensky, Alarcón and Pascalutsa, PRC 90 (2014)]

 \bullet Polarizability corrections to the μH Lamb shift (Proton Radius Puzzle)

	Heavy Baryon [1]	Relativistic chiral EFT [2]	Dispersive [3]	
$\Delta E_{2S}^{(\mathrm{pol})}$	-18.5	-8.2 ^{+2.0} _{-2.5}	-8.5(1.1)	

- [1] Nevado and Pineda, PRC 77 (2008).
- [2] Alarcón, Lensky, Pascalutsa, EPJ C 74 (2014).
- [3] Birse and McGovern, EPJ A 48, (2012); Carlson and Vanderhaeghen, PRA 84, (2011).
- π^0 -photoproduction [A.N. Hiller Blin, T. Ledwig, M.J. Vicente Vacas, PLB 747 (2015)]
- ullet $\pi N
 ightarrow \pi \pi N$ [Siemens, Bernard, Epelbaum, Krebs, Meißner, PRC 89 (2014)]

Summary and Conclusions

Summary and Conclusions

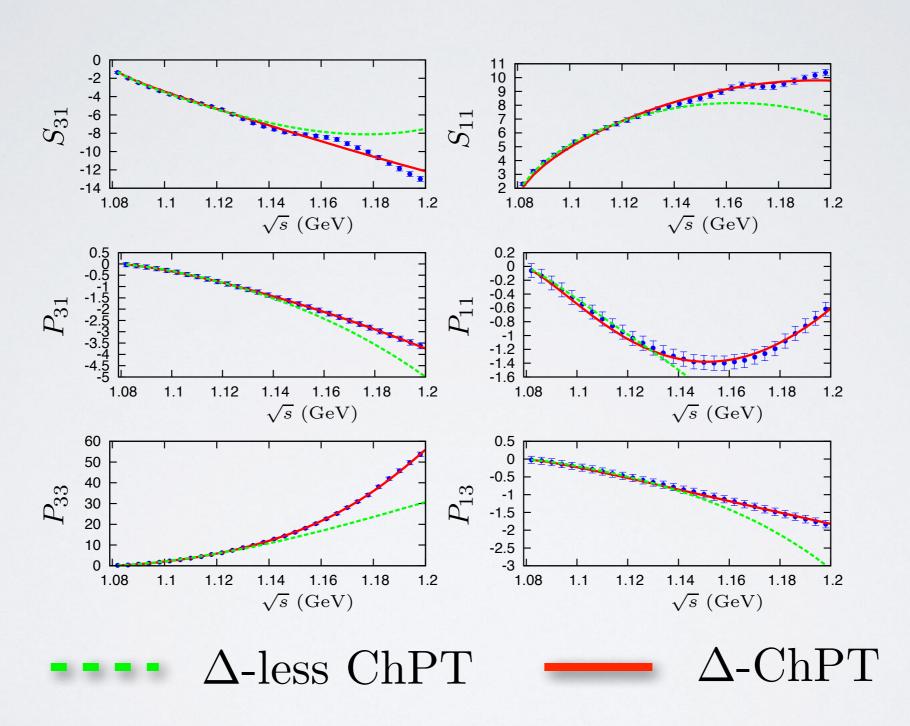
- Chiral EFT with baryons has made important progress in the last years.
- Relativistic formulation $+ \Delta(1232)$ is crucial to achieve a good convergence in the low energy region.
- Agreement with dispersive analyses in low-energy πN scattering For first time in the literature!
- Extraction of $\sigma_{\pi N}$ from scattering and spectroscopy data.

$$\sigma_{\pi N} = 59(7) \text{ MeV}$$

• Extraction of the strangeness content of the nucleon.

$$y = 0.02(13)$$

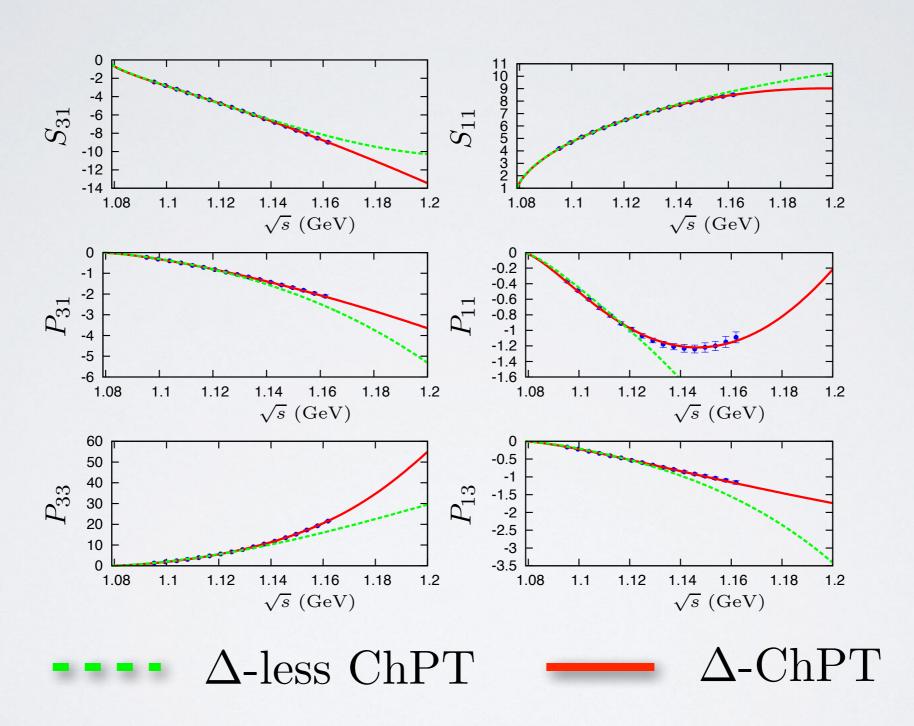
- New picture of σ -terms compatible with LQCD and experiments.
- New πN LECs are expected to improve the convergence of nuclear forces in the chiral EFT formalism \longrightarrow Improved 2N forces.
 - --- Many-body nuclear interactions with NLEFT


FIN

Spares

Fits to PWAs

Fits to PWAs


Fits to KA85

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

Fits to PWAs

Fits to EM06

[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

LECs

LECs

LEC	KA85	WI08	EM06
	Δ-ChPT	Δ-ChPT	Δ-ChPT
c_1	-0.80(6)	-1.00(4)	-1.00(1)
c_2	1.12(13)	1.01(4)	0.58(3)
c_3	-2.96(15)	-3.04(2)	-2.51(4)
c_4	2.00(7)	2.02(1)	1.77(2)
$d_1 + d_2$	-0.15(21)	0.15(20)	-0.36(6)
d_3	-0.21(26)	-0.23(27)	0.28(4)
d_5	0.82(14)	0.47(7)	0.20(3)
$d_{14} - d_{15}$	-0.11(44)	-0.5(5)	0.35(9)
d_{18}	-1.53(27)	-0.2(8)	-0.53(12)
h_A	3.02(4)	2.87(4)	2.99(2)
$\chi^2_{\rm d.o.f.}$	0.77	0.24	0.11

Subthreshold expansion

Subthreshold expansion

• The disagreement found by Becher and Leutwyler is related to the disagreement in the subthreshold expansion.

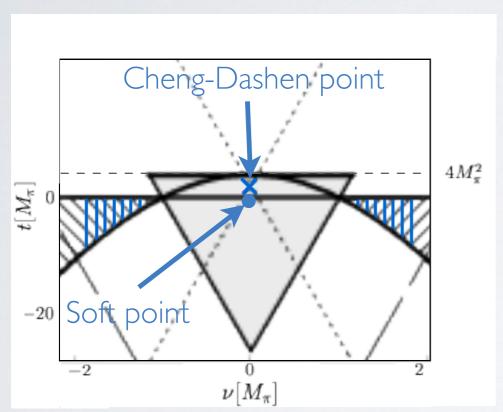
$$T(\nu,t) = \bar{u} \Big(D(\nu,t) - \frac{1}{4m_N} B(\nu,t) [q, q'] \Big) u \qquad \nu \equiv \frac{s-u}{4m_N}$$

$$\bar{D}^+(\nu,t) = \bar{d}_{00}^+ + \bar{d}_{01}^+ t + \bar{d}_{10}^+ \nu^2 + \bar{d}_{02}^+ t^2 + \dots$$

$$\bar{D}^-(\nu,t) = \bar{d}_{00}^- \nu + \bar{d}_{01}^- \nu t + \bar{d}_{10}^- \nu^3 + \dots$$

$$\bar{B}^-(\nu,t) = \bar{b}_{00}^- + \dots$$

	KA85 Д∕ -ChPT	WI08 Д∕ -ChPT	EM06 Д∕ -ChPT	KA85 Δ-ChPT	WI08 Δ-ChPT	EM06 Δ-ChPT	KA85 [50]	WI08 [4]
$d_{00}^+ (M_{\pi}^{-1})$	-2.02(41)	-1.65(28)	-1.56(5)	-1.48(15)	-1.20(13)	-0.98(4)	-1.46	-1.30
$d_{01}^+ (M_{\pi}^{-3})$	1.73(19)	1.70(18)	1.64(4)	1.21(10)	1.20(9)	1.09(4)	1.14	1.19
$d_{10}^{+}(M_{\pi}^{-3})$	1.81(16)	1.60(18)	1.532(45)	0.99(14)	0.82(9)	0.631(42)	1.12(2)	_
$b_{00}^{+} (M_{\pi}^{-3})$	-6.5(2.4)	-7.4(2.3)	-7.01(1.1)	-5.1(1.7)	-5.1(1.7)	-4.5(9)	-3.54(6)	_
$d_{00}^{-}(M_{\pi}^{-2})$	1.81(24)	1.68(16)	1.495(28)	1.63(9)	1.53(8)	1.379(8)	1.53(2)	_
$d_{01}^{-3} (M_{\pi}^{-4})$	-0.17(6)	-0.20(5)	-0.199(7)	-0.112(25)	-0.115(24)	-0.0923(11)	-0.134(5)	_
$d_{10}^{-1} (M_{\pi}^{-4})$	-0.35(10)	-0.33(10)	-0.267(14)	-0.18(5)	-0.16(5)	-0.0892(41)	-0.167(5)	_
$b_{00}^{-1}(M_{\pi}^{-2})$	17(7)	17(7)	16.8(7)	9.63(30)	9.755(42)	8.67(8)	10.36(10)	_


- \bullet Remarkable agreement of Δ -ChPT with dispersive results.
- Never achieved before with Chiral EFT.
- Solves the problems found by Becher and Leutwyler.

The Cheng-Dashen Theorem

• Traditionally, the sigma-term has been extracted using the Cheng-

Dashen Theorem:

$$\Sigma \equiv f_{\pi}^2 \bar{D}^+(0, 2M_{\pi}^2) = \sigma(t = 2M_{\pi}^2) + \Delta_R = \sigma_{\pi N} + \Delta_{\sigma} + \Delta_R$$

$$\Sigma = f_{\pi}^{2}(\bar{d}_{00}^{+} + \bar{d}_{01}^{+} 2M_{\pi}^{2}) + f_{\pi}^{2}(\bar{d}_{02}^{+} 4M_{\pi}^{4} + \dots)$$

$$\Sigma_{d} \qquad \Delta_{D}$$

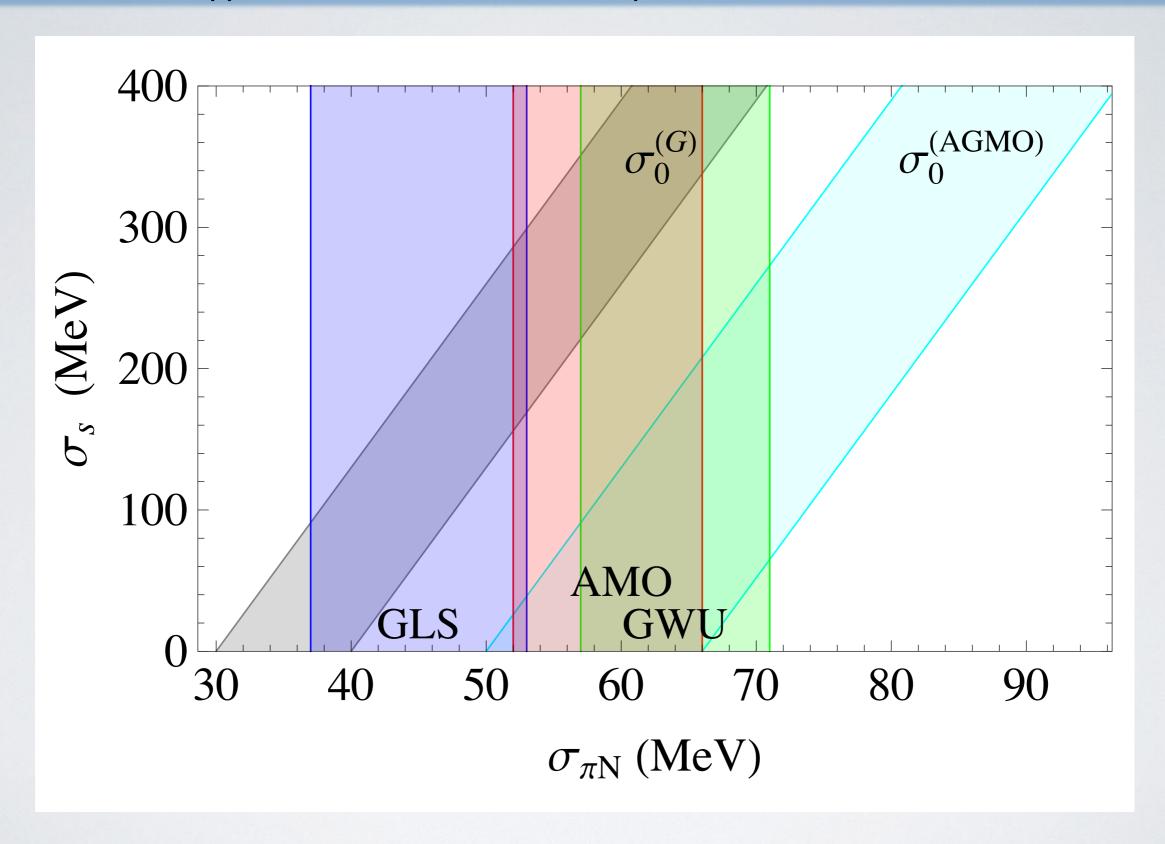
t-channel

$$\sigma_{\pi N} = \Sigma_d + \Delta_D - \Delta_\sigma$$

$$\Delta_D - \Delta_\sigma \approx 3(1) \text{ MeV}$$

 $\Delta_D^{(3)} - \Delta_\sigma^{(3)} \approx 3.5(2.0) \text{ MeV}$

[Gasser, Leutwyler & Sainio, PLB 253 (1991)]


[Alarcón, Martin Camalich and Oller, Ann. of Phys. 336 (2013)]

We recover the dispersive result!

• Smart way to suppress "contamination" from the t-channel.

Different scenarios for the σ -terms

Different scenarios for the σ -terms

