

Imbalanced Fermi Systems: Nuclear properties as a function of the Z/A ratio

Modeling Quasi-Free (p,pN) Reactions with Unstable Nuclei

Sam Stevens, Jan Ryckebusch, Wim Cosyn, Camille Colle

Introduction

Why Study Asymmetric Nuclei?

Asymmetric nuclei have some unusual properties

- halo nuclei
- ▶ new magic numbers in neutron-rich nuclei
- ► special dynamical properties due to short-range correlations (SRC)

▶ ...

Neutron stars:

- extremely imbalanced Fermi systems $(x_p = Z/A \ll 0.5)$
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

Understanding the properties of exotic nuclei is important for nuclear astrophysics $_{3/18}$

How to Probe Asymmetric Nuclei?

Quasi-Free (p,pN) Reactions in Inverse Kinematics

Experimentally

Quasi-Free A(p,pN)B Reactions in Inverse Kinematics

- highly asymmetric nuclei are unstable
 - ⇒ need experiments with accelerated nuclei
- ▶ in inverse kinematics we can also study deeply bound nucleons

Sufficiently High Beam Momenta

- reveal SRC effects
 - ⇒ need to probe high momentum tails
- lower the contribution of other possible reactions to the cross section

Theoretically

Theoretically

Distorted Wave Impulse Approximation

- (A-1) degrees are frozen in the interaction Hamiltonian (can be kinematically controlled)
- ▶ one "hard" *pN* interaction process
- three nucleons subject to intranuclear attenuation
 - "soft" initial-state interaction of the impinging proton
 - "soft" final-state interactions of the two ejected nucleons
 - modeled by using distorted plane waves in Eikonal approximation

(T. Aumann, C. A. Bertulani, and J. Ryckebusch, Phys. Rev. C 88, 064610 (2013))

Factorized Cross Section in the DWIA

▶ knockout of a nucleon *N* with quantum numbers *l* and *j*:

$$\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}\vec{q}\,\mathrm{d}\Omega_{N}} \propto \frac{S(lj)}{j+1} \sum_{\alpha} \mathcal{K}(\alpha,\sigma,\vec{q},\Omega_{N}) \,\rho_{\alpha}^{D}\left(\vec{q}\right) \, \left(\frac{\mathrm{d}\sigma_{pN}^{\mathrm{fs}}}{\mathrm{d}\Omega_{N}}\right)$$

scaling variable: missing momentum

$$\vec{q} = \vec{p}_1 + \vec{p}_N - \vec{p}_1$$

▶ scaling function: distorted momentum distribution

$$ho_{lpha}^{D}\left(ec{q}
ight)=rac{1}{(2\pi)^{3}}\left|\int dec{r}\;e^{-iec{q}\cdotec{r}}\;\widehat{S}_{IFSI}\left(ec{r}
ight)\;\psi_{lpha}\left(ec{r}
ight)
ight|^{2}$$

Distorted momentum distribution

$$ho_{lpha}^{D}\left(ec{q}
ight)=rac{1}{(2\pi)^{3}}\left|\int dec{r}\;\mathrm{e}^{-iec{q}\cdotec{r}}\;\widehat{S}_{IFSI}\left(ec{r}
ight)\;\psi_{lpha}\left(ec{r}
ight)
ight|^{2}$$

- $\triangleright \alpha$: quantum number of bound nucleon
- ▶ $\widehat{S}_{IFSI}(\vec{r})$ encodes the **attenuation** for the 3 nucleons that are subject to **initial and final state interactions**
- ▶ two different **eikonal approaches** to calculate $\widehat{S}_{IFSI}(\vec{r})$

(B. Van Overmeire, W. Cosyn, P. Lava, and J. Ryckebusch, Phys. Rev. C 73, 064603 (2006))

9/18

Relativistic Optical Model Eikonal Approximation (ROMEA)

Differential cross section for the $^{12}C(p,2p)$ reaction in the kinetic energy range $800 MeV < T_1 < 1 GeV$.

For most asymmetric nuclei: no optical potential available ⇒ need to use a **Multiple Scattering Glauber model**

Relativistic Multiple Scattering Glauber Approximation (RMSGA)

- eikonal approximation based on diffractive scattering
- more natural at higher energies
- multiple scattering theory with "frozen" nucleons
- based only on individual nucleon-nucleon scattering:
 - ▶ data readily available from free pp and pn scattering
 - ⇒ can be used for the **whole mass range**!

Single Charge Exchange

- charge exchange in initial and final state interactions
- only single charge exchange is taken into account
- modelled in a semi-classical way:

$$P_{N_1 o N_2}^{\mathrm{CX}}(\vec{r}, T_k) = 1 - \exp\left[-\sigma_{CX}(T_{N_1}) \int_z^{+\infty} \mathrm{d}z' \, \rho_{N_2}(x, y, z')\right]$$

use average probabilities:

$$\overline{P}_{N_1 \to N_2}^{\rm CX}(T_k) \; = \; \int \mathrm{d}\vec{r} \; \rho_{N_1}(\vec{r}) \; P_{N_1 \to N_2}^{\rm CX}(\vec{r}, \, T_k) \label{eq:decomposition}$$

Available (p, 2p) Data

And Future Prospects

T. Kobayashi et al.: C(p, 2p)B reactions on ^{9-16}C

- ▶ beams of different carbon isotopes ⁹⁻¹⁶C
- beam kinetic energy of 250 A MeV
- solid-hydrogen target
- knockout of valence p-state as well as deeply bound s-state protons
- \triangleright two final protons detected at angles $\pm 39^{\circ}$
- residual nucleus (fragments) detected using a forward magnetic spectrometer
- selection of the reaction through boron detection and appropriate energy gates

T. Kobayashi: C(p,2p)B reactions on ^{9-16}C

Fit of the theoretical **PWIA** cross sections to the experimental **momentum** distributions for the knockout of *p*-state protons.

T. Kobayashi: $C(p,2p)\overline{B}$ reactions ^{9-16}C

Fit of the theoretical **PWIA** cross sections to the experimental momentum distributions for the knockout of *s*-state protons.

OUTLOOK

- ▶ Include initial and final state interactions in the results
 - ► Kobayashi et al.: use RMSGA as low-order approximation
- ► Include single charge exchange
- ► Include **short range correlation** (SRC) effects
- Model two-nucleon knockout reactions A(p,pNN')B (sensitive to SRC)
- Apply the model to data from other experiments
- Experiments at
 - NUSTAR@FAIR
 - RIKEN
 - ► HIMAC

can provide new data to model

THANK YOU FOR YOUR ATTENTION

