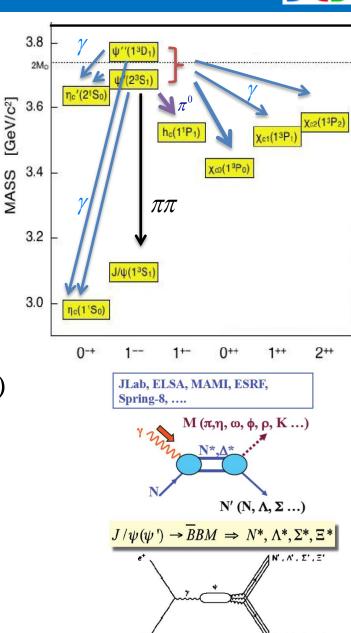
Studies of Charmonium at BESIII

Rong-Gang Ping
(For the BESIII Collaboration)
Institute of High Energy Physics, CAS

2015 European Nuclear Physic Conference, 31 Aug.-4 Sept., 2015, Groningen University

2015-8-31

Introduction


Vector charmonium data sets

Vector charmonium	Previous data	BESIII now	Goal
J/ <i>ψ</i>	BESII: 58 M	1.2B(20×BESII)	10 B
ψ (3686)	CLEO: 28 M	0.5B(20×CLEO)	3 B
$\psi(3770)$	CLEO: 0.8 fb ⁻¹	2.9fb ⁻¹ (3.5×CLEO)	20 fb ⁻¹

- η_c , $\eta_c(2S)$, χ_{cJ} are available via γ transition, and h_c available via pion transiton.
- charmonium physics (see arXiv: 0809.1869)
 - $\rho\pi$ puzzle, and violation of the 12% rule
 - non- $D\bar{D}$ decays of $\psi(3770)$
 - light hadron structure and properties

-

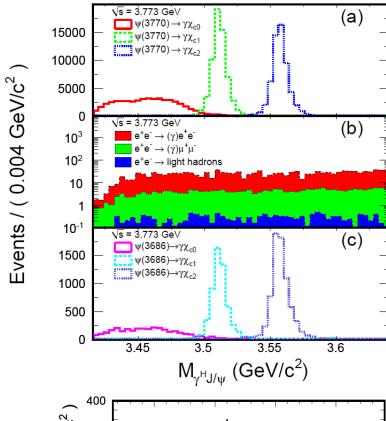
• rare decays: $J/\psi \rightarrow \gamma\gamma$, $\gamma\phi$, $\phi\pi^0$

$\psi(3770) \rightarrow \gamma \chi_{cJ}$ with $\chi_{cJ} \rightarrow \gamma J / \psi \rightarrow \gamma l^+ l^-$

- Br($\psi(3770) \rightarrow \text{non } D\overline{D}$)=(14.7 ± 3.2)% (Phys. Lett. B641, 145 (2006)).
- No significant non $D\overline{D}$ exclusive decays are established. How to understand the $\psi(3770)$ decay mechanisms and properties?
- If it contains additional light quarks or gluons, it may have large branching fractios decays into ligh hadrons.
- Light hadron transition or radiative transitions, e.g. $\pi\pi J/\psi$, $\pi J/\psi$, $\eta J/\psi$, and $\gamma \chi_{cJ}$, can probe the $\psi(3770)$

		Radiative decays			\Box
$\gamma \chi_{c2}$	PDG2014	< 9	4	CL=90%	211
$\gamma \chi_{c1}$		\ ,	.6) $\times 10^{-3}$	CE-3070	253
$\gamma \chi_{c0}$,	$.9) \times 10^{-3}$		341

• *S - D* mixing model: (PRD44,3562; PRD64,094002, PRD69,094019)


$$\Gamma(\psi(3770) \rightarrow \gamma \chi_{c1})$$
: 59~183 KeV

 $\Gamma(\psi(3770) \rightarrow \gamma \chi_{c2})$: 3~24 KeV

Large uncertainties!

arXiv:1504.07450v01

2015-8-31 A00

A00

By

Color and the second of the seco

- •The analysis is based on the 2.92 fb⁻¹ ψ " data.
- •The χ_{cJ} are reconstructed with the decay

$$\chi_{cJ} \rightarrow \gamma J/\psi \rightarrow \gamma l^+ l^-$$

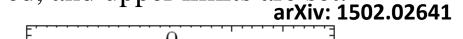
$$\mathcal{B}(\psi(3770) \to \gamma \chi_{c1}) = (2.48 \pm 0.15 \pm 0.23) \times 10^{-3},$$

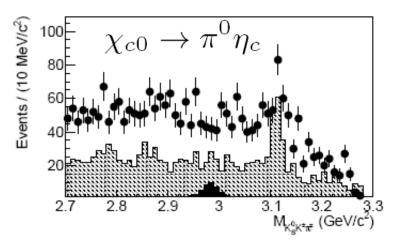
$$\mathcal{B}(\psi(3770) \to \gamma \chi_{c2}) < 0.64 \times 10^{-3}$$

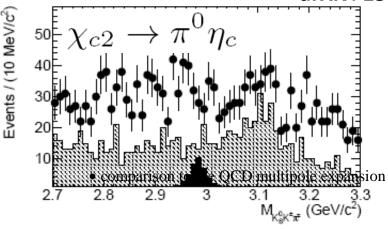
Experiment/Theory	$\Gamma(\psi(3770) \to \gamma \chi_{cJ}) \text{ (keV)}$		
Experiment/Theory	J=1	J=2	
This work	$67.5 \pm 4.1 \pm 6.7$	< 17.4	
Ding-Qin-Chao [12]			
non-relativistic	95	3.6	
relativistic	72	3.0	
Rosner S - D mixing [13]			
$\phi = 12^{\circ} [13]$	73 ± 9	24 ± 4	
$\phi = (10.6 \pm 1.3)^{\circ} [32]$	79 ± 6	21 ± 3	
$\phi = 0^{\circ} \text{ (pure } 1^{3}D_{1} \text{ state) } [32]$	133	4.8	
Eichten-Lane-Quigg [14]			
non-relativistic	183	3.2	
with coupled-channel corr.	59	3.9	
Barnes-Godfrey-Swanson [15]			
non-relativistic	125	4.9	
relativistic	77	3.3	

Searches for isospin-violating transition $\chi_{c0.2} \to \pi^0 \eta_c$

- In quark model, the isospin-violating is broken due to the electromagnetic interaction or the up-down quark mass difference. The expected decay rates are very small.
- However, a larger isospin decay ratio is observed in charmonium transitions, e.g. R=Br($\psi(2S) \rightarrow \pi^0 J/\psi$)/Br ($\psi(2S) \rightarrow \eta J/\psi$)=0.374 ± 0.072, indicates the important role played by the nonperturbative effects. (PRL103,082003)
- Searches for the isospin-violating decay $\chi_{cI} \to \pi^0 \eta_c$ gives insights in the isospin-violating mechanisms.
- QCD multipole expansion gives the relation: $Br(\chi_{c0} \to \pi^0 \eta_c) \approx Br(\chi_{c1} \to \pi^+ \pi^- \eta_c)$ (PRD86, 074033), and $Br(\chi_{c1} \to \pi^+ \pi^- \eta_c) \approx (2.22 \pm 1.24)\%$. (PRD 75, 054019)
- The analysis is based on the 106 million $\psi(2S)$ data set at the BESIII, and the η_c is constructed with the decay $\eta_c \to K_S^0 K^{\pm} \pi^{\mp}$.


2015-8-31


Searches for isospin-violating transition $\chi_{c0,2} \to \pi^0 \eta_c$

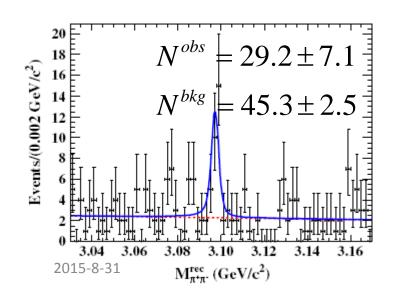


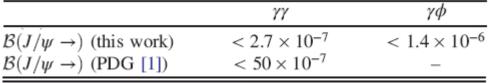
• The peack near 3.12 GeV is due to the background $\psi(2S) \rightarrow \pi^0 \pi^0 J / \psi$.

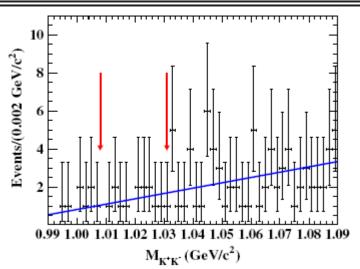
• No significant η_c signals are observed, and upper limits are set.

	$\chi_{c0} \rightarrow \pi^0 \eta_c$	$\chi_{c2} \to \pi^0 \eta_c$
N_J^{UL}	14.1	35.9
ε J	5.8%	8.6%
δ_J	13.8%	20.2%
$B(\chi_{cJ} \to \pi^0 \eta_c)(10^{-3})$	< 1.6	< 3.2

PRD 91, 112018 (2015)

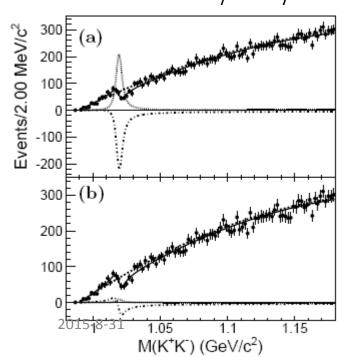

- Comparison to the QCD multipole expansion if $B(\chi_{c0} \to \pi^0 \eta_c) = 0.022$, then one expect the obsvered events in the 106×10^6 data sets $N^{obs} = 302.$
- This measurement is not contradictory to another prediction (a few $\times 10^{-4}$) (PRD, 86, 074033) with the QCD multipole expansion.


2015-8-31


Search for C – violation decay $J/\psi \rightarrow \gamma\gamma, \gamma\phi$

- The C-parity violation is forbidden in the electromagnetic interaction, any observation of the $J/\psi \to \gamma\gamma$ decay indicates a new physics.
- Based on the 106 million $\psi(3686)$ data set, we use the decay $\psi(2S) \to \pi^+ \pi^- J/\psi$ to search for $J/\psi \to \gamma\gamma$, $\gamma\phi$.
- Dominant backgrounds, $J/\psi \to \gamma \pi^0$, $\gamma \eta$, $\gamma \eta_c \to 3\gamma$, and $J/\psi \to 3\gamma$, are carefully studied with MC simulation. PRD 90, 092002

No *C*-violation decays were observed!



Search for OZI-suppressed decay $J/\psi \to \pi^0 \phi$

- The decay $J/\psi \to \phi \pi^0$ is highly suppressed dut to double OZI rule.
- The observation is helpful to understand the $\omega \phi$ mixing and SU(3) flavor symmetry breaking.
- The analysis is based on the 1.31 billion J/ψ data sample, and the π^0 candidates are reconstructed with two photons
- The structure at the ϕ mass region is assumed due to the interference between the J/ $\psi \to \phi \pi^0$ and $K^+K^-\pi^0$ decays.

Phys.Rev. D91 ,11, 112001 (2015)

Two solutions are obtained.

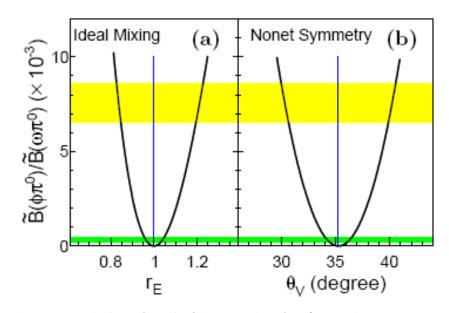
Solution	$N^{ m sig}$	δ	$2\Delta \log \mathcal{L}/N_f$	Z
I	838.5 ± 45.8	$-95.9^{\circ} \pm 1.5^{\circ}$	45.8/2	6.4σ
II	35.3 ± 9.3	$-152.1^{\circ} \pm 7.7^{\circ}$	45.8/2	6.4σ

Branching fraction:

I: $[2.94 \pm 0.16(\text{stat.}) \pm 0.16(\text{syst.})] \times 10^{-6}$

II: $[1.24 \pm 0.33(\text{stat.}) \pm 0.30(\text{syst.})] \times 10^{-7}$

Search for OZI-suppressed decay $J/\psi \rightarrow \pi^0 \phi$



Nonet symmetry broken

$$\frac{B(\phi \pi^{0})}{B(\omega \pi^{0})} = \left(\frac{p_{\phi}}{p_{\omega}}\right)^{3} \frac{(r_{E} \tan \theta_{V} - 1/\sqrt{2})^{2}}{(r_{E} + \tan \theta_{V}/\sqrt{2})^{2}}$$

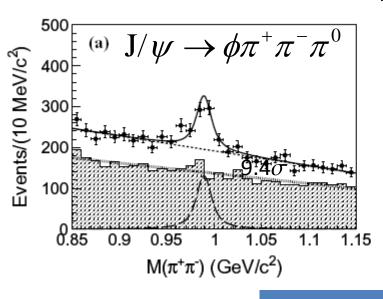
 $r_E = 1$ (nonet symmetry)

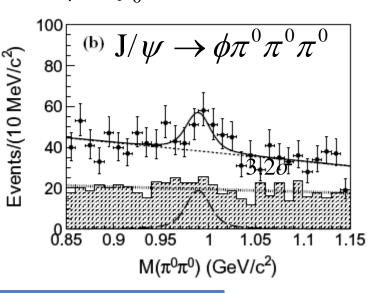
$$\theta_V = arc \tan(1/\sqrt{2})$$
 (ideal $\omega - \phi$ mixing)

assume ideal mixing:
$$r_E - 1 = (21.0 \pm 1.6)\%$$
 or $(-16.4 \pm 1.0)\%$ (solution I) $(3.9 \pm 0.8)\%$ or $(-3.7 \pm 0.7)\%$ (solution II)

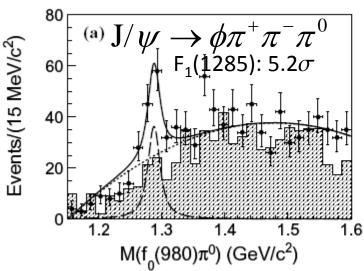
assume nonet symmetry:
$$\phi_V = |\theta_V - \theta_V^{ideal}| = 4.97^\circ \pm 0.33^\circ$$
 (solution I)
= $1.03^\circ \pm 0.19^\circ$ (solution II)

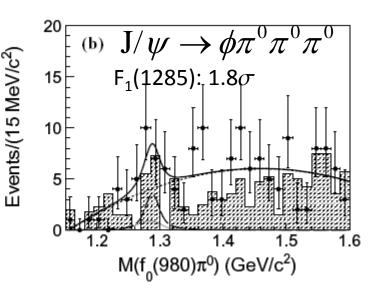
quadratic mass formula: $\phi_V = 3.84^{\circ}$ (PDG)


fit to radiative transition: $3.34^{\circ} \pm 0.09^{\circ}$ (J. High Energy Phys. 0907,105)


Nonet asymmetry indication!

Observation of the isospin-violating decay $J/\psi \rightarrow \phi \pi^0 f_0(980)$


- The nature of $f_0(980)$ is a long-standing puzzle.
- It has been interpreted as a $q\overline{q}$ state, a $K\overline{K}$ molecule, a glueball, and a four-quark state.
- Average values of $f_0(980)$ resonance parameters : $M=980\pm20$ MeV, $\Gamma=40$ to 100 MeV.
- In J/ $\psi \to \gamma \eta (1405) \to \gamma \pi^0 f_0(980)$, measured $\Gamma = 9.5 \pm 1.1$ MeV (PRL. 108,182001)
- Not $a_0 f_0(980)$ mixing mechanism, it was identified as a triangle singularity mechanism (PRL108,081803)
- What about $f_0(980)$ in the decay $J/\psi \to \phi \pi^0 f_0(980)$


Observation of $J/\psi \rightarrow \phi \pi^0 f_0(980)$

PRD92,012007

- A simultaneous fit gave M=989.4 \pm 1.3MeV, Γ =15.3 \pm 4.7 MeV.
- Measured mass and width consistent with those measured in $J/\psi \rightarrow \gamma \pi^0 f_0(980)$.

•
$$\mathcal{B}(f_1 \to \pi^0 f_0 \to \pi^0 \pi^+ \pi^-) / \mathcal{B}(f_1 \to \pi^0 a_0^0 \to \pi^0 \pi^0 \eta) = (3.6 \pm 1.4)\%$$

$$\mathcal{B}(\eta(1405) \to \pi^0 f_0 \to \pi^0 \pi^+ \pi^-) / \mathcal{B}(\eta(1405) \to \pi^0 a_0^0 \to \pi^0 \pi^0 \eta) = (17.9 \pm 4.2)\%$$

• This analysis supports the argument that the nature of the resonances a_0 and f_0 as dynamically generated makes the amount of isospin breaking strongly dependent on the physical process.

2015-7-22

Summary

By using BESIII data sets taken at J/ψ , $\psi(3686)$ and $\psi(3770)$ peak, we search for the radiative and rare decays:

- The measurement of Br($\psi(3770) \rightarrow \gamma \chi_{c1}$) is improved.
- No significant signals for the isospin-violating transition $\chi_{c0/2} \to \pi^0 \eta_c$ and C-violation $J/\psi \to \gamma \gamma, \gamma \phi$ are observed.
- The double OZI suppressed decay $J/\psi \to \pi^0 \phi$, and isospin violation decay $J/\psi \to \phi \pi^0 f_0(980)$ observed.

These measurements provide more information on the charmonium structure, and the isospin and C-parity violation in the charmonium decays.