Origin of low-lying enhanced $E1$ strength in rare-earth nuclei

Mark Spieker1,*, Sorin Pascu1,2, and Andreas Zilges1

1Institute for Nuclear Physics, University of Cologne, Germany
2Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

EuNPC 2015
Groningen (Netherlands)

Supported by the DFG (ZI 510/4-2)

*Supported by the Bonn-Cologne Graduate School of Physics and Astronomy

Special thanks to Francesco Iachello
The nuclear $E1$ response

$E1$ strength due to isospin-symmetry breaking

GDR: M.N. Harakeh, A. van der Woude, Giant Resonances, Oxford University Press (2001)
PDR: D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013)
The nuclear $E1$ response

$E1$ strength due to isospin-symmetry breaking

... are there more generating mechanisms?

GDR: M.N. Harakeh, A. van der Woude, Giant Resonances, Oxford University Press (2001)
PDR: D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013)
Isospin-symmetry breaking in atomic nuclei

Low-lying $E1$ strength due to isospin-symmetry breaking

[F. Iachello, PLB 160, 1 (1985)]

Two components:

- Quadrupole-octupole coupling (static/dynamic)
- α-clustering mode

[F. Iachello, PLB 160, 1 (1985)]
Is clustering a general phenomenon in nuclei?

\[\text{[J.-P. Ebran \textit{et al.}, PRC 90, 054329 (2014)]} \]
Low-lying $E1$ strength in rare-earth nuclei

$E1$ strength in rare-earth nuclei
(combined experimental efforts of Stuttgart, Giessen, Köln, and Darmstadt in ‘80s and ‘90s)

- **Nuclear resonance fluorescence (NRF)** using Stuttgart and Darmstadt setups
- Most selective probe to study dipole strength
- **Complete dipole strength** between 0.8 – 4.1 MeV
- **Parity measurements** using Compton polarimeters
 \[\rightarrow \] Parity of strongly excited states accessible ($E1$ or $M1$ excitation?)
- **γ-decay branching** of strongly excited states
 \[\rightarrow \] K quantum number assignment ($\Delta K=0$ or $\Delta K=1$ excitation?)

Large experimental data base!

[C. Fransen et al., PRC 57, 129 (1998)]
Low-lying $E1$ strength in rare-earth nuclei

$E1$ strength in rare-earth nuclei
(combined experimental efforts of Stuttgart, Giessen, Köln, and Darmstadt in ‘80s and ‘90s)

- Nuclear resonance fluorescence (NRF) using Stuttgart and Darmstadt setups
- Most selective probe to study dipole strength
- Complete dipole strength between 0.8 – 4.1 MeV
- Parity measurements using Compton polarimeters
 → Parity of strongly excited states accessible ($E1$ or $M1$ excitation?)
- γ-decay branching of strongly excited states
 → K quantum number assignment ($\Delta K=0$ or $\Delta K=1$ excitation?)

Large experimental data base!

[C. Fransen et al., PRC 57, 129 (1998)]
Isospin-symmetry breaking in atomic nuclei

Low-lying $E1$ strength due to isospin-symmetry breaking

[F. Iachello, PLB 160, 1 (1985)]

Two components:
- Quadrupole-octupole coupling (static/dynamic)
- α-clustering mode

How to describe these two modes with one “simple” model?

[F. Iachello, PLB 160, 1 (1985)]
Theoretical description of cluster configurations

- Cluster states can be explained by the algebra of $U(\nu+1)$, e.g., ^{12}C and ^{16}O!
- $\nu = 3n - 3$, where $n = \#\text{clusters}$

 - [R. Bijker, F. Iachello, PRC 61, 067305 (2000)]
 - [R. Bijker, F. Iachello, PRL 112, 152501 (2014)]

- $U(4)$ for two-body clusters
- $U(4)$ is the algebra of the sp interacting boson model
Clustering in atomic nuclei – $U(\nu+1)$

Theoretical description of cluster configurations

- Cluster states can be explained by the algebra of $U(\nu+1)$, e.g., 12C and 16O!
- $\nu = 3n-3$, where $n = \#\text{clusters}$

 [R. Bijker, F. Iachello, PRC 61, 067305 (2000)]
 [R. Bijker, F. Iachello, PRL 112, 152501 (2014)]

- $U(4)$ for two-body clusters
- $U(4)$ is the algebra of the sp interacting boson model

\rightarrow *spdf* IBM to describe octupole mode and α-clustering mode!

[M. Freer/University of Birmingham]
The interacting boson model (IBM)

- Drastic truncation of the valence space in terms of bosons of different multipolarities, e.g., \(l = 0 - 3 \) (s, p, d, and f bosons)
- Description of collective nuclear properties in an algebraic approach

M. Spieker, University of Cologne, AG Zilges Origin of enhanced \(E1 \) strength in rare-earth nuclei
E1 strength in Nd isotopes

First 1- state:
- p-boson is responsible for parabolic evolution of the $E1$ strength!

$$
\hat{T}(E1) = e_1 [\chi_{sp}(s^\dagger \bar{p} + p^\dagger \bar{s})^{(1)} + (p^\dagger \bar{d} + d^\dagger \bar{p})^{(1)} + \chi_{df}(d^\dagger \bar{f} + f^\dagger \bar{d})^{(1)}]
$$

[MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]
E1 strength in Nd isotopes

Experimental data from:
- [H.H. Pitz et al., NPA 509, 587 (1990)]
- [H. Friedrichs et al., PRC 45, 892(R) (1992)]
- [T. Eckert et al., PRC 56, 1256 (1997)]
- [ENSDF, 2015]

IBM Results:
- [MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]
Origin of enhanced $E1$ strength in rare-earth nuclei

Experimental data from:
- [H. H. Pitz et al., NPA 509, 587 (1990)]
- [H. Friedrichs et al., PRC 45, 892(R) (1992)]
- [T. Eckert et al., PRC 56, 1256 (1997)]
- [ENSDF, 2015]

IBM Results:
- [S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]
Results:

- Good agreement with experimental data for almost all known low-lying 1^- states (strength and centroid energy)
- Strong p-boson states are observed ($n_p/n_f > 1$)
E1 strength in other rare-earth nuclei

- **Experimental data from:**
 - ENSDF, 2015

- **sd-IBM parameters for Dy:**
 - (Gd parameters similar)

- **IBM Results:**
 - [MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]

Results:
- *spdf*-IBM is able to describe the low-lying *E1* strength in rare-earth nuclei!
- *U(4), i.e.*, two-body cluster, plays a crucial role!
Neutron-deficient rare earths – Ba isotopes

\[\text{sd-IBM parameters: [S. Pascu et al., PRC 81, 054321 (2010)]} \]

\[\text{[M. Spieker et al., to be published]} \]
The nuclear *E1* response

E1 strength due to isospin-symmetry breaking

... are there more generating mechanisms?
... is there a cluster component in the PDR?

GDR: M.N. Harakeh, A. van der Woude, Giant Resonances, Oxford University Press (2001)
PDR: D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013)
α clusters and the PDR?

... is there a cluster component in the PDR?

Experimental Data:
[A. Jung et al., NPA 584, 103 (1995)]
[C. Romig et al., PRC 88, 044331 (2013)]
[S. Volz et al., NPA 779, 1 (2006)]
[see also: S. Pascu et al., PRC 85, 064315 (2012)]
The diagram shows the behavior of $B(E1)$ and $B(E2)$ transition probabilities for α clusters in 140Ce. The panels on the left display the $B(E1)$ values as a function of energy, with $B(E1) \rightarrow 10^{-3}$ e fm2. The panels on the right show the $B(E2)$ values in terms of σ and γ as a function of energy [D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013)].

The question mark (?) indicates an area of interest, possibly related to the origin of enhanced $E1$ strength in rare-earth nuclei.

[S. Volz et al.]
[B. Löher et al.]
Experimental identification?

M. Spieker et al., to be published

(p,p'):
I. Poltoratska et al., PRC 85, 041304(R) (2012)

(17O,17O'):
F.C.L Crespi et al., PRL 113, 012501 (2014)
L. Pellegrini et al., PLB 738, 519 (2014)

(α,α'):
J. Endres et al., PRL 105, 212503 (2010)
Dipole α vibrations – a universal collective mode?

Centroid energy evolves smoothly as expected for a collective mode!

$E_x = 8.8(19) \cdot A^{-1/3} + 9.9(11) \cdot A^{-1/6}$

[M. Spieker et al., to be published]

M. Spieker, University of Cologne, AG Zilges

Origin of enhanced $E1$ strength in rare-earth nuclei
Summary & open questions

- **Summary**
 - Possible signatures of an α-cluster
 - p-boson describes in a natural way parabolic behavior of $E1$ strength
 - Existence of cluster states in heavy nuclei possible!
 - Enhanced $E1$ transitions might serve as an indicator

- **Some open questions**
 - Theory:
 - Unambiguous correspondence of sp-IBM, i.e., $U(4)$ with cluster configurations?
 → Microscopic calculations including $4QP a priori, i.e., \(\alpha\)-particles needed!
 - Experiment:
 - Further experimental observables?
 - Parity of dipole states?
 - Link between deformed and spherical nuclei/ connection with PDR?
 - Is there a mass dependence?

[MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]