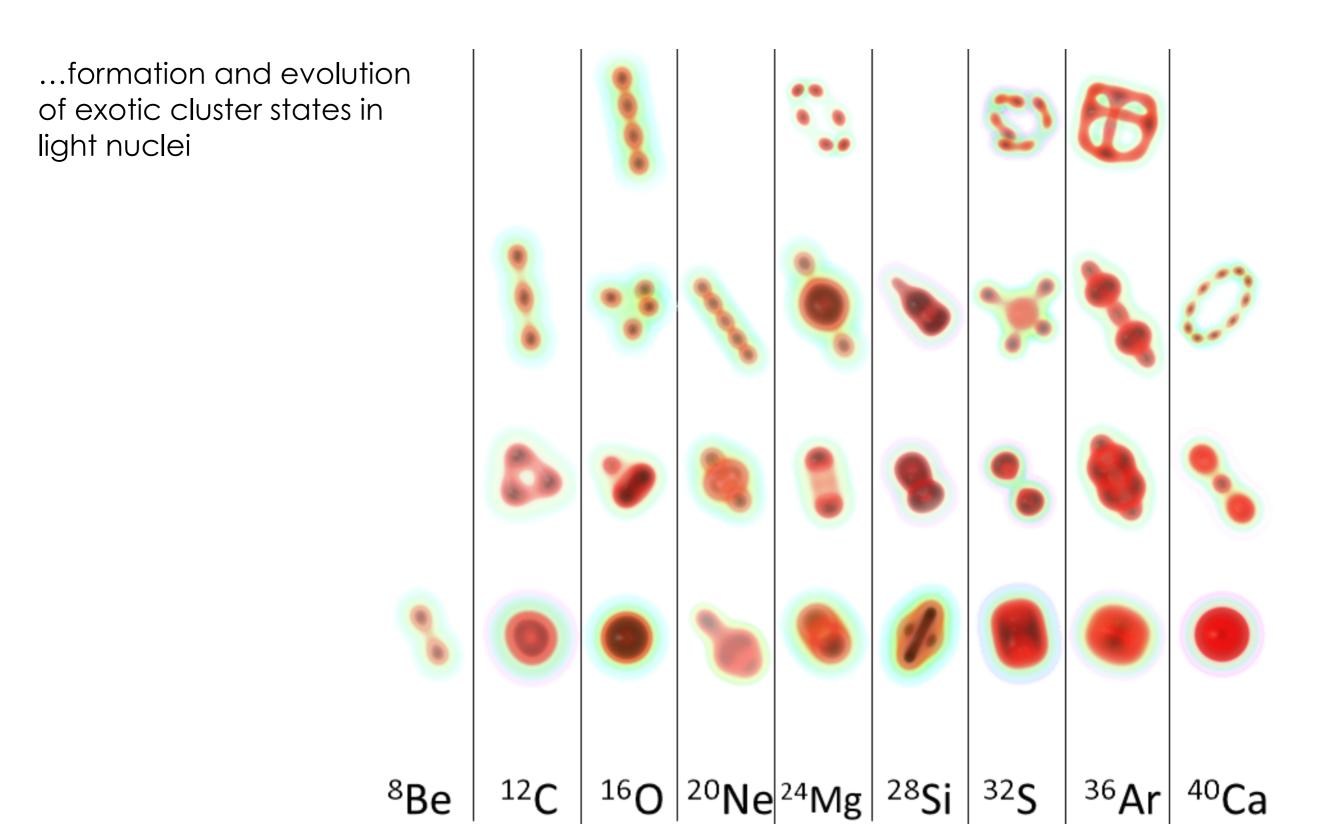
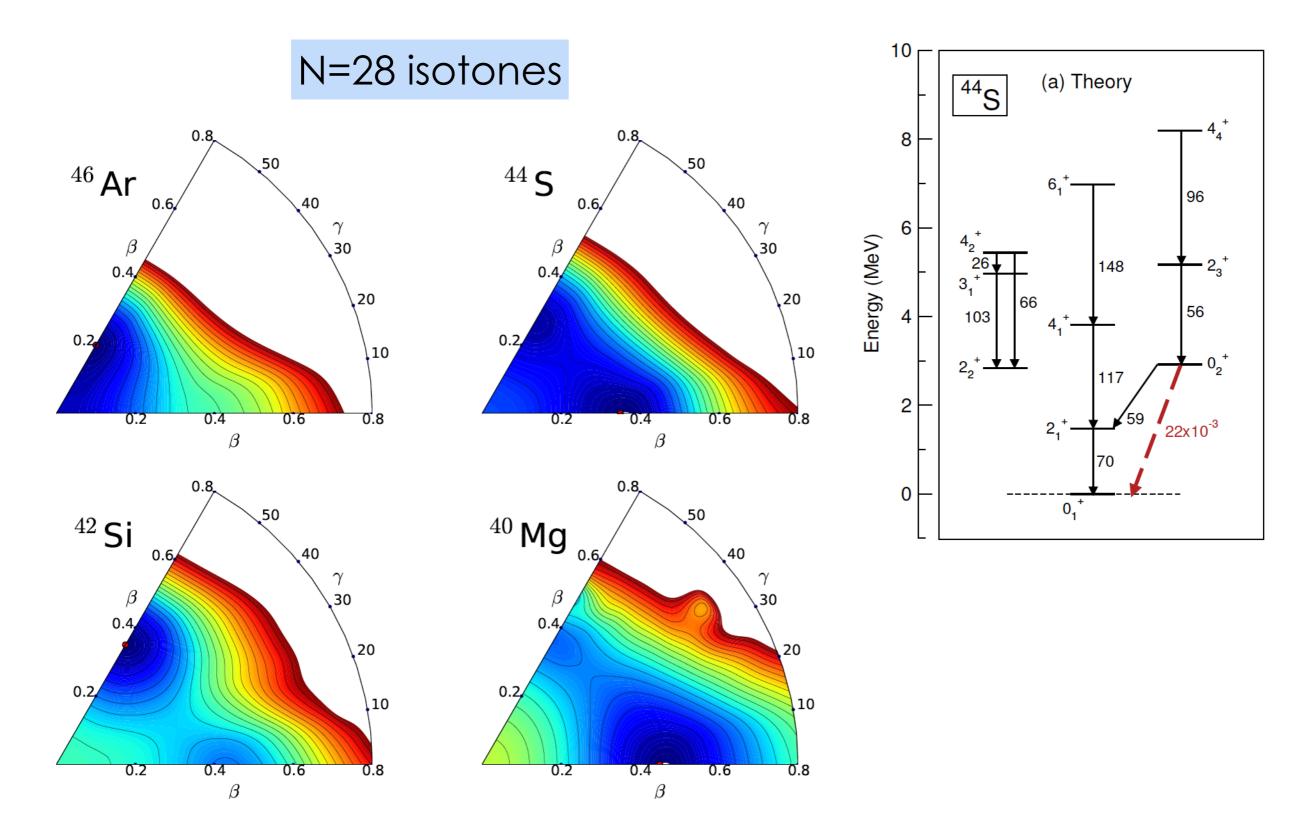
Evolution of Low-Energy Collective Excitations

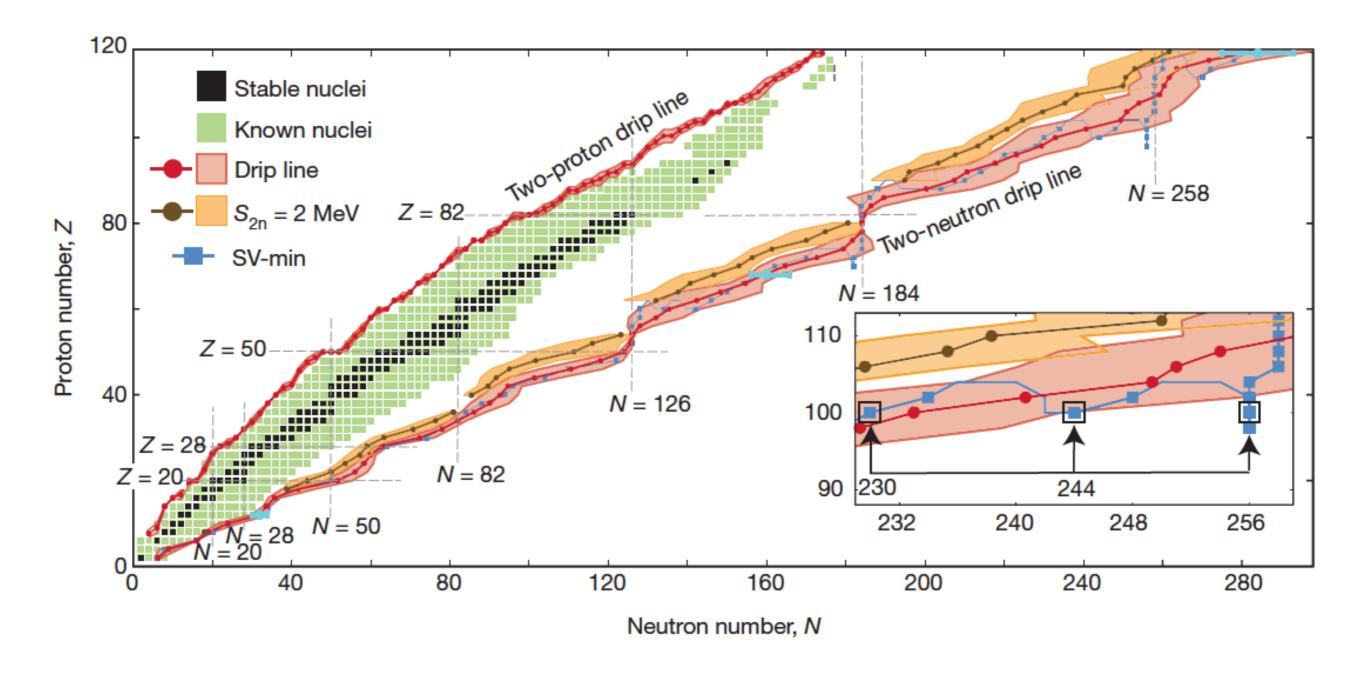
Dario Vretenar University of Zagreb The atomic nucleus is a unique finite quantum system in which single-particle and collective degrees of freedom coexist. The evolution of low-energy collective excitations... ...structure phenomena across the chart of nuclides.



...modification of shell structure and the occurrence of deformations in closed-shell nuclei far from β -stability

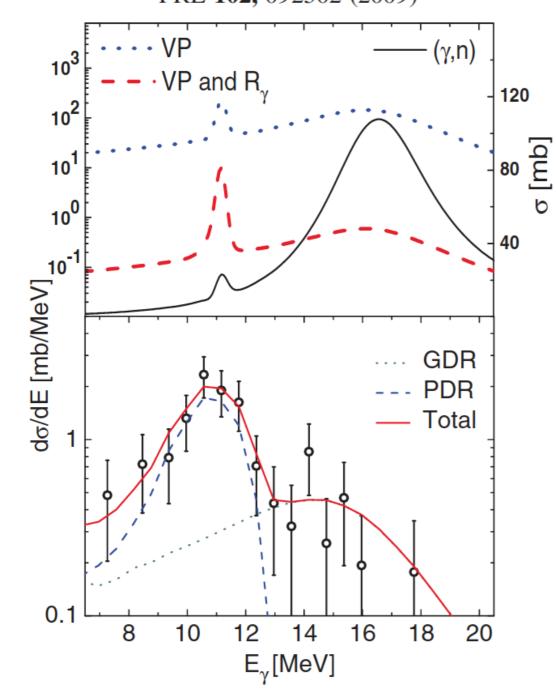


Location of the nucleon drip lines and the limits of the nuclear landscape:

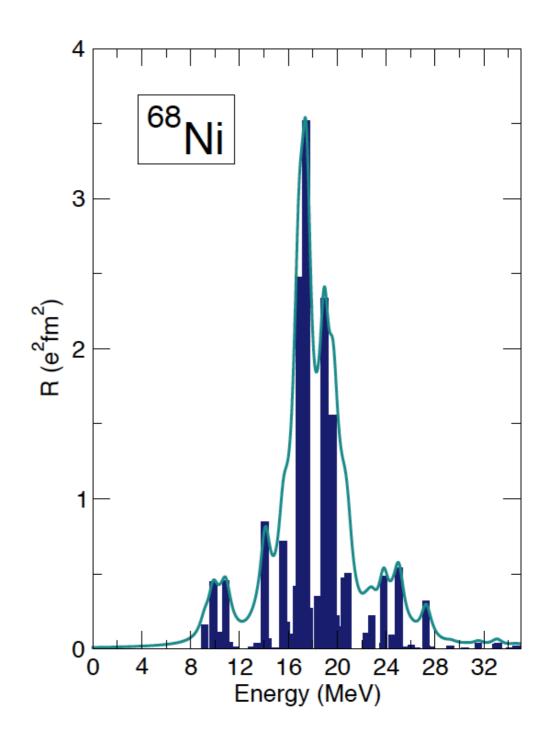


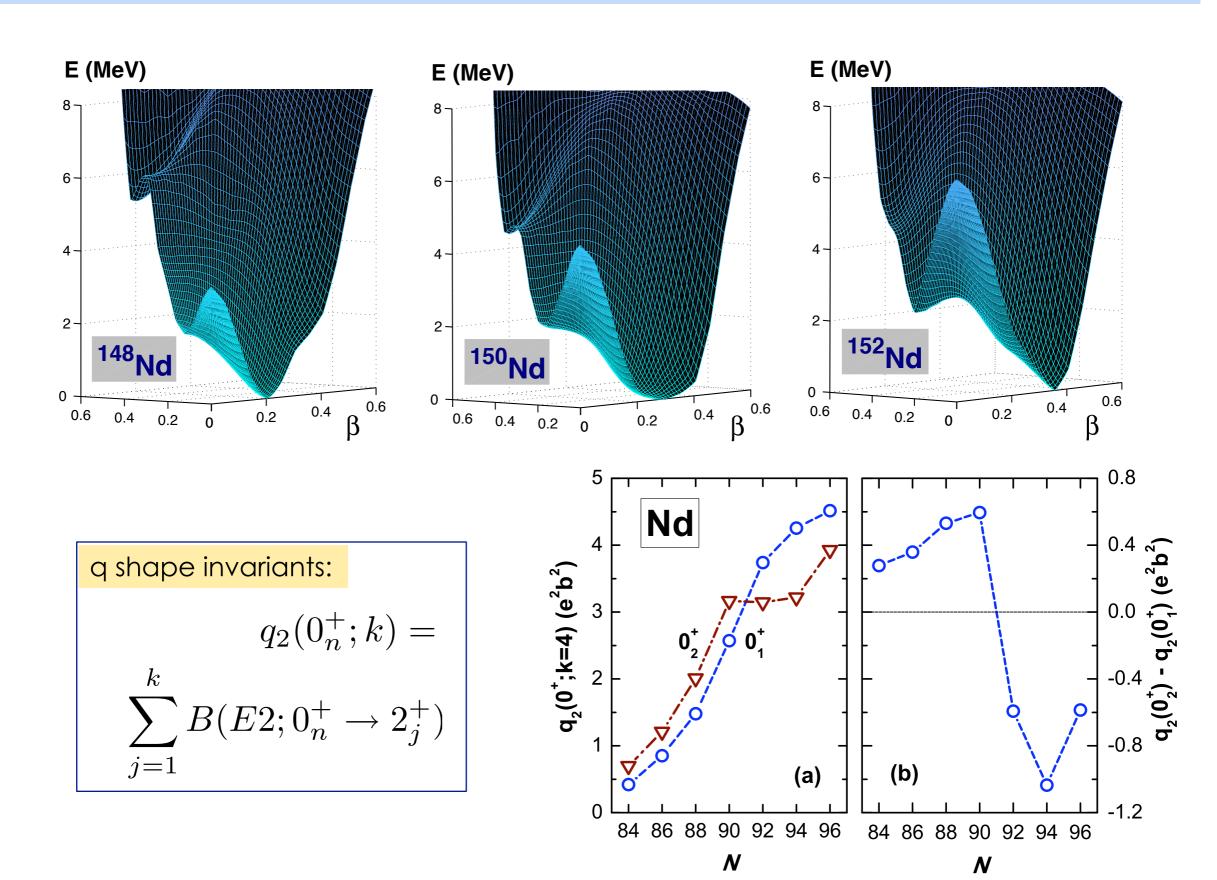
Neutron-rich nuclei → weak binding of the excess neutrons, diffuse neutron densities, formation of a neutron skin, pygmy dipole resonances (PDR) in medium-mass and heavy nuclei.

⁶⁸Ni photoabsorption cross section PRL **102**, 092502 (2009)



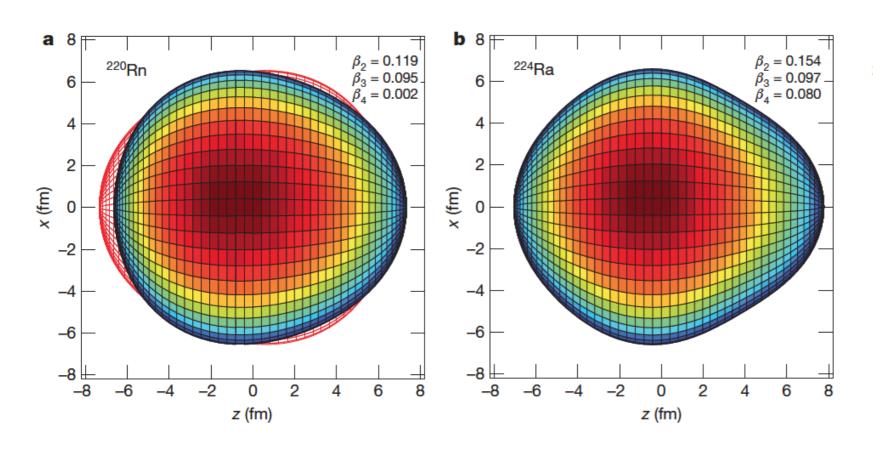
E1 strength function

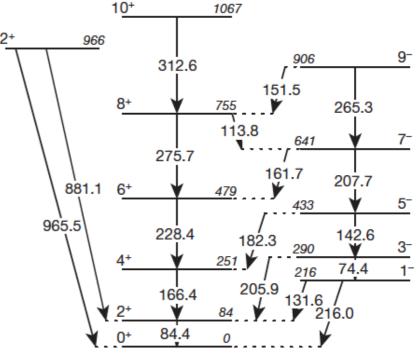




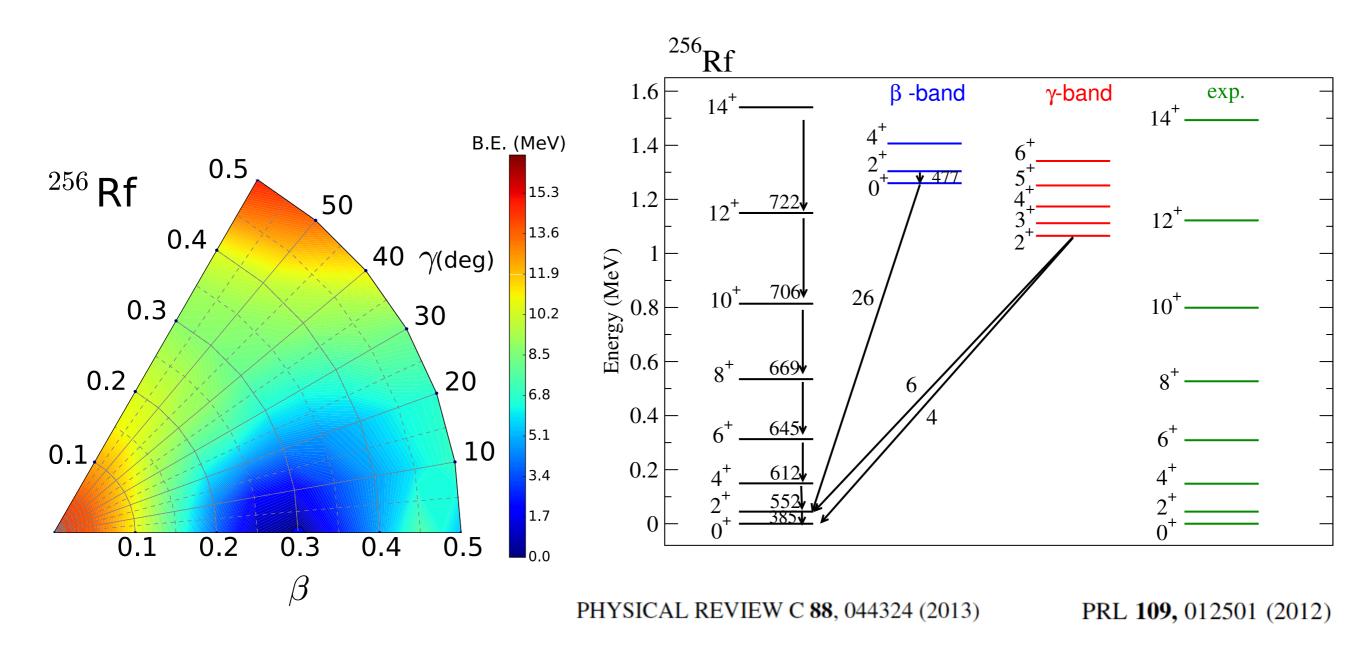
PHYSICAL REVIEW C 80, 061301(R) (2009)

Octupole deformed (pear-shaped) heavy nuclei:





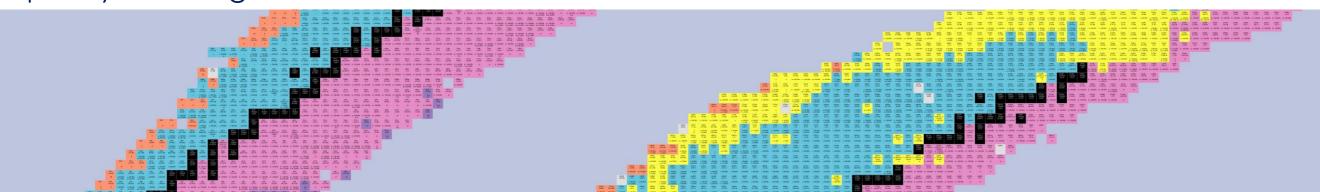
Subshell closures and stability of superheavy nuclei: rotational band structure



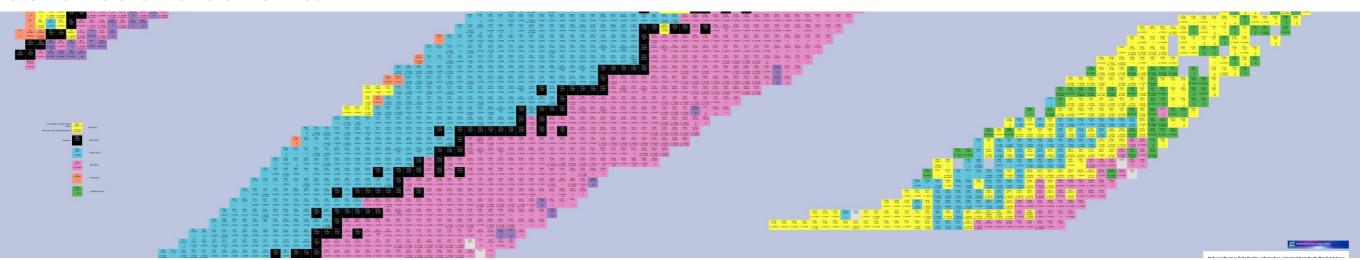
Universal collective phenomena that reflect the organisation of nucleonic matter in finite nuclei \rightarrow global theory framework that can be applied to different mass regions.

Energy Density Functionals

✓ the nuclear many-body problem is effectively mapped onto a one-body problem without explicitly involving inter-nucleon interactions!



✓ the exact density functional is approximated with powers and gradients of ground-state densities and currents.

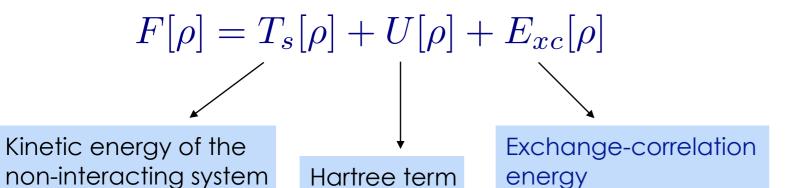


✓ universal density functionals can be applied to all nuclei throughout the chart of nuclides.

Important for extrapolations to regions far from stability!

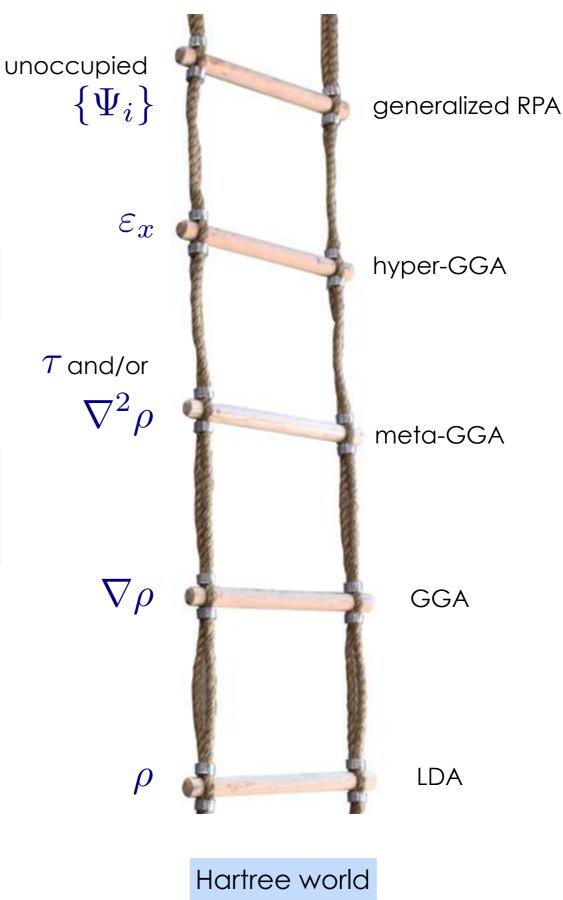
Kohn-Sham Density Functional Theory

... a universal functional:



Self-consistent Kohn-Sham DFT: includes correlations and therefore goes beyond Hartree-Fock. It has the advantage of being a *local scheme*.

Jacob's ladder of DFT approximations for the E_{xc} .



Nuclear Many-Body Correlations

short-range

(hard repulsive core of the NN-interaction)

long-range

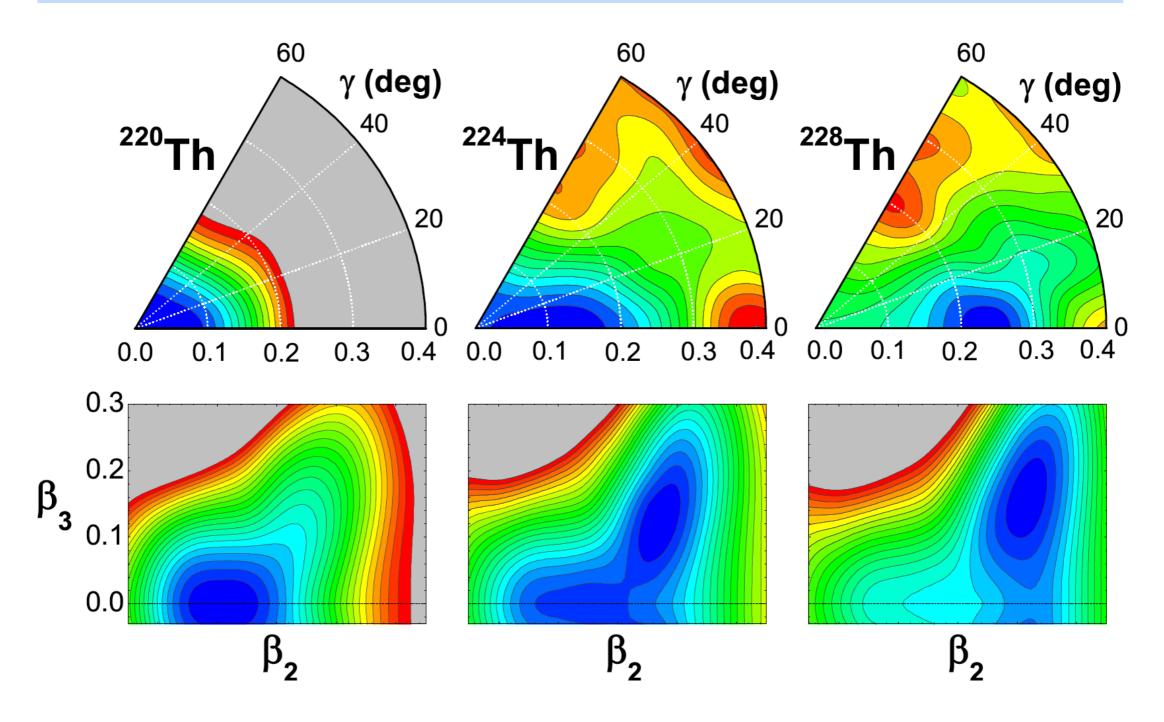
nuclear resonance modes (giant resonances)

collective correlations

large-amplitude soft modes: (center of mass motion, rotation, low-energy quadrupole vibrations)

...vary smoothly with nucleon number! Can be included implicitly in an effective Energy Density Functional. ...sensitive to shell-effects and strong variations with nucleon number! Cannot be included in a simple EDF framework.

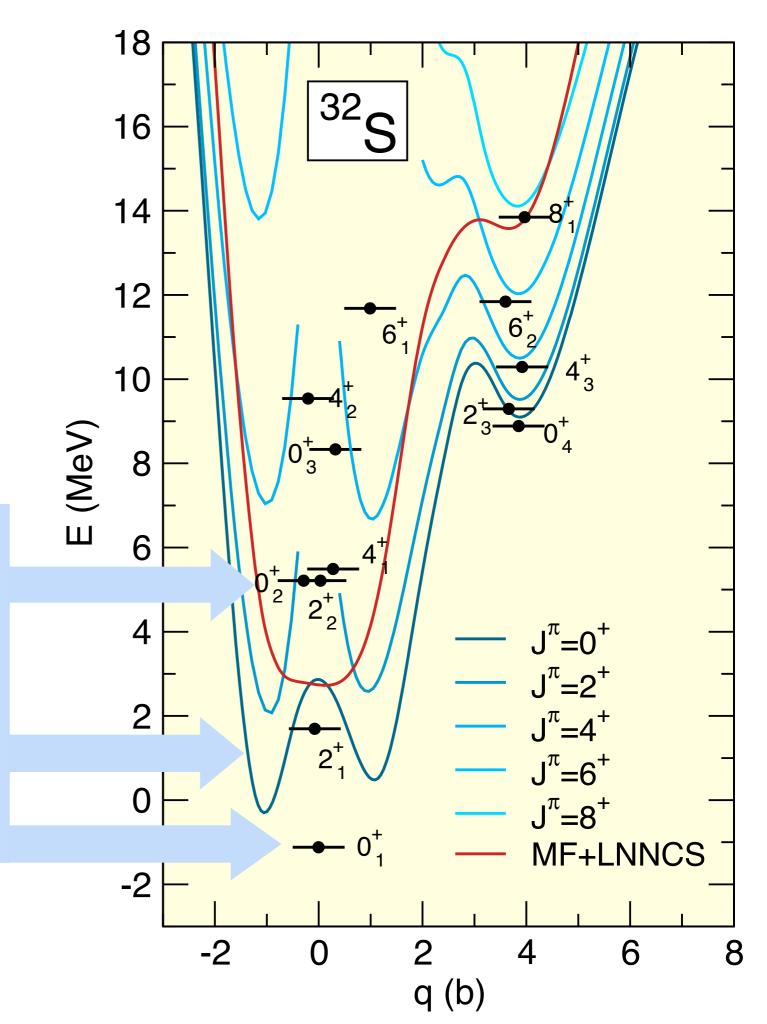
The constrained self-consistent mean field method produces semi-classical energy surfaces as functions of intrinsic deformation parameters.



- → include static correlations: deformations & pairing
- → do not include dynamic (collective) correlations that arise from symmetry restoration and quantum fluctuations around mean-field minima

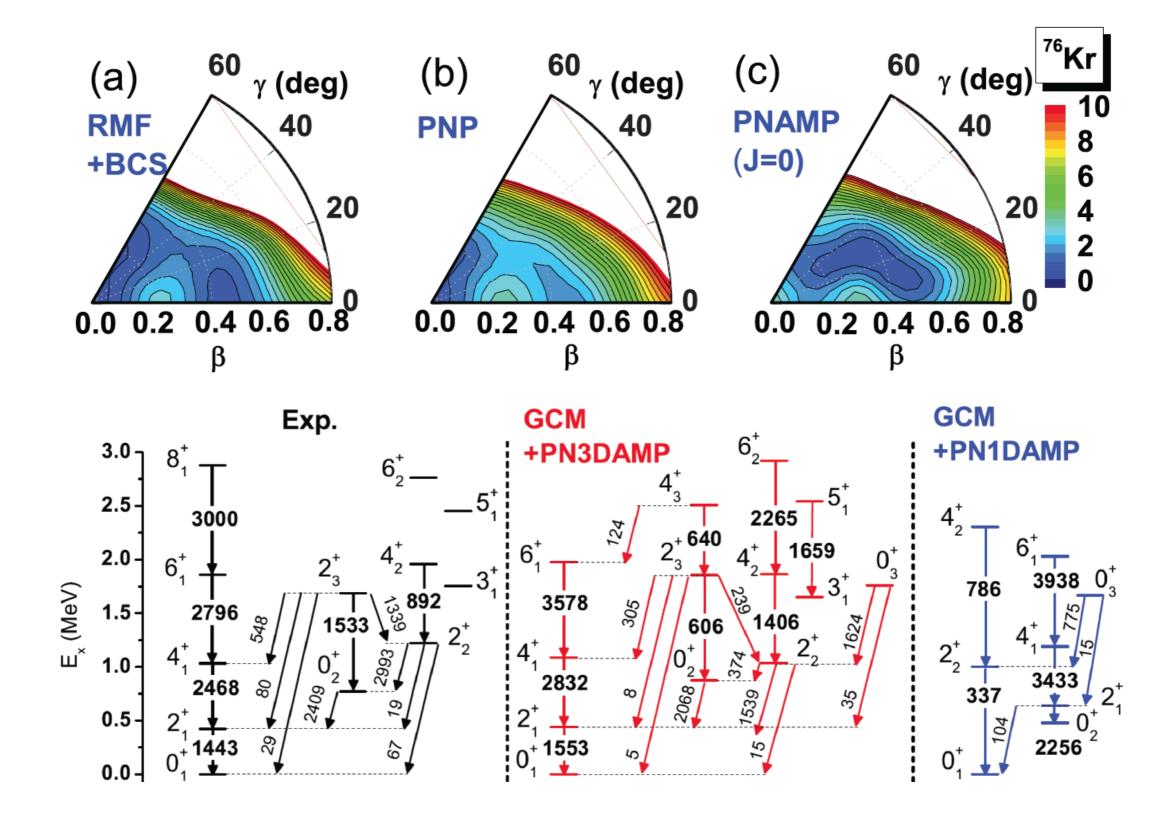
Restoration of broken symmetries (rotational, particle number) and fluctuations of collective variables (quadrupole deformation).

- Mean-field calculations, with a constraint on the quadrupole moment.
- 2. Angular-momentum and particle-number projection.
- 3. Generator Coordinate Method ⇒ configuration mixing



... larger variational space for projected GCM calculations!

Particle-number projected 3D AMP + GCM model



Five-dimensional collective Hamiltonian

Phys. Rev. C 79, 034303 (2009).

Prog. Part. Nucl. Phys. 66, 519 (2011).

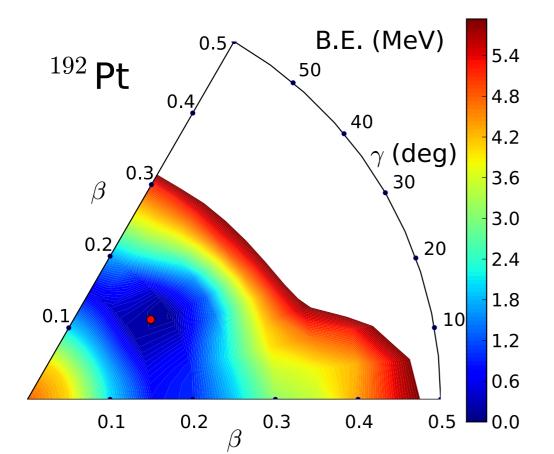
... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom

$$H_{\text{coll}} = \mathcal{T}_{\text{vib}}(\beta, \gamma) + \mathcal{T}_{\text{rot}}(\beta, \gamma, \Omega) + \mathcal{V}_{\text{coll}}(\beta, \gamma)$$

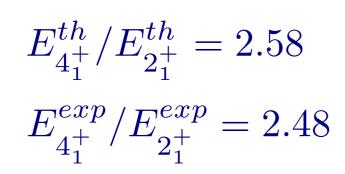
$$\mathcal{T}_{\text{vib}} = \frac{1}{2} B_{\beta\beta} \dot{\beta}^2 + \beta B_{\beta\gamma} \dot{\beta}\dot{\gamma} + \frac{1}{2} \beta^2 B_{\gamma\gamma} \dot{\gamma}^2$$

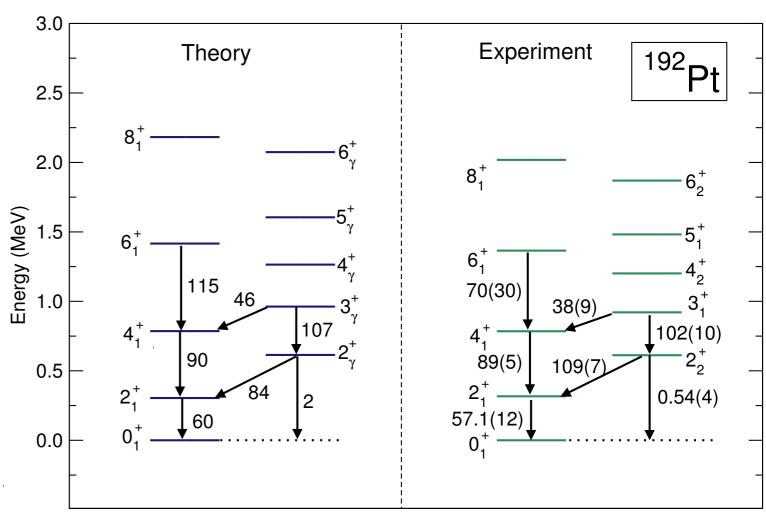
$$\mathcal{T}_{\text{rot}} = \frac{1}{2} \sum_{k=1}^{3} \mathcal{I}_k \omega_k^2$$

The entire dynamics of the collective Hamiltonian is governed by the seven functions of the intrinsic deformations β and γ : the collective potential, the three mass parameters: $B_{\beta\beta}$, $B_{\beta\gamma}$, $B_{\gamma\gamma}$, and the three moments of inertia I_k .

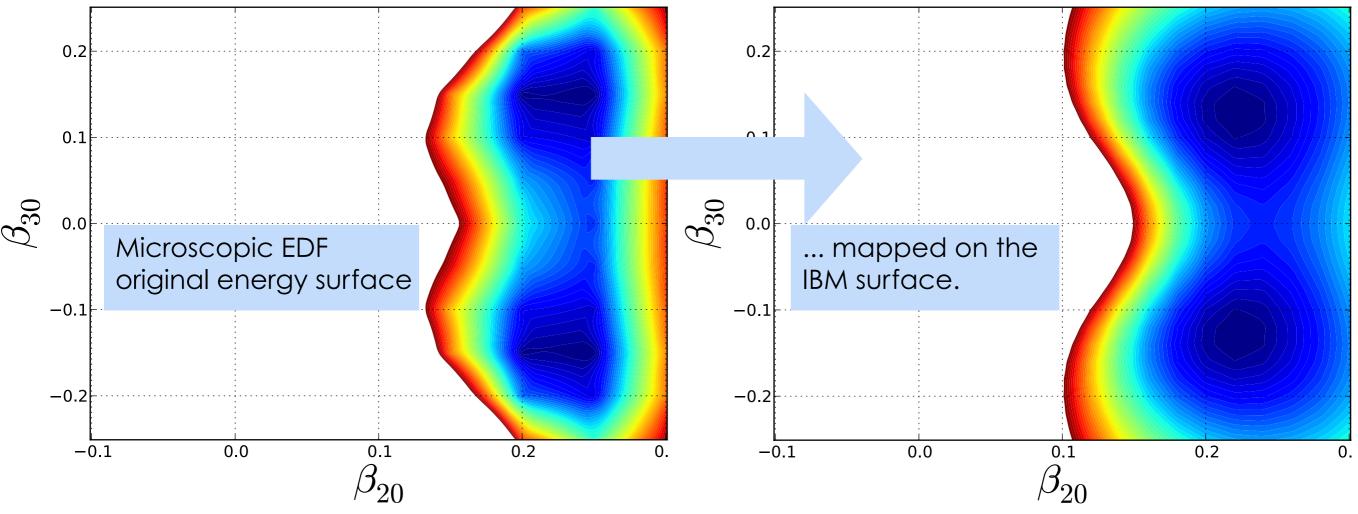


Prog. Part. Nucl. Phys. 66, 519 (2011).





More complex shapes: additional (octupole) degrees of freedom



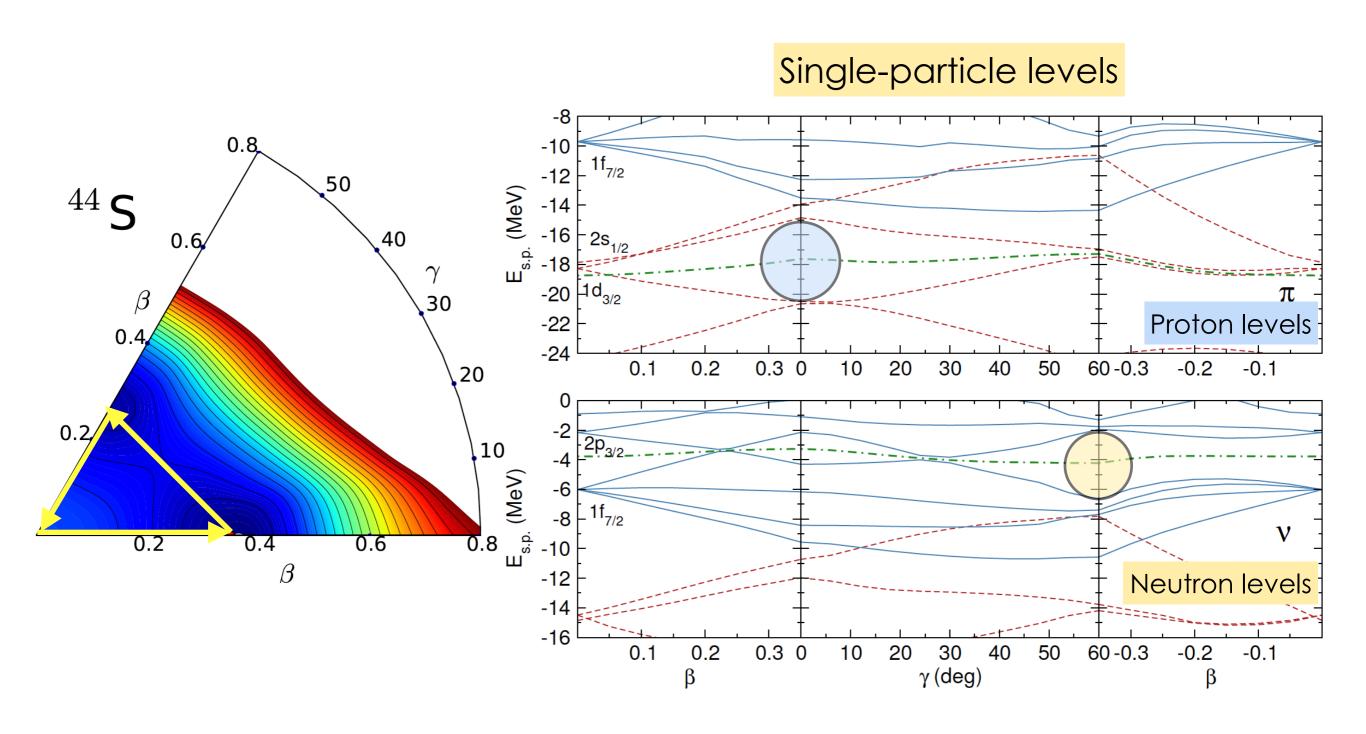
Mapping the microscopic PES on the expectation value of the IBM Hamiltonian in the sdf-boson condensate state:

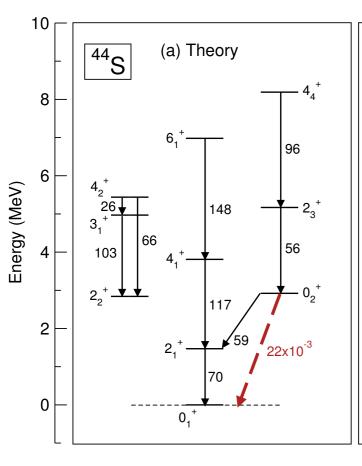
$$\hat{H} = \epsilon_d \hat{n}_d + \epsilon_f \hat{n}_f + \kappa_2 \hat{Q} \cdot \hat{Q} + \alpha \hat{L}_d \cdot \hat{L}_d + \kappa_3 : \hat{V}_3^{\dagger} \cdot \hat{V}_3 :$$

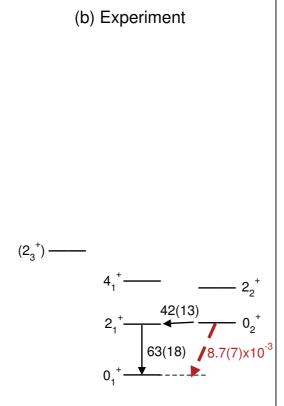
$$|\phi\rangle = \frac{1}{\sqrt{N!}} (\lambda^{\dagger})^N |-\rangle \qquad \qquad \lambda^{\dagger} = s^{\dagger} + \beta_2 d_0^{\dagger} + \beta_3 f_0^{\dagger}$$

Phys. Rev. C 88, 021303(R) (2013). Phys. Rev. C 89, 024312 (2014).

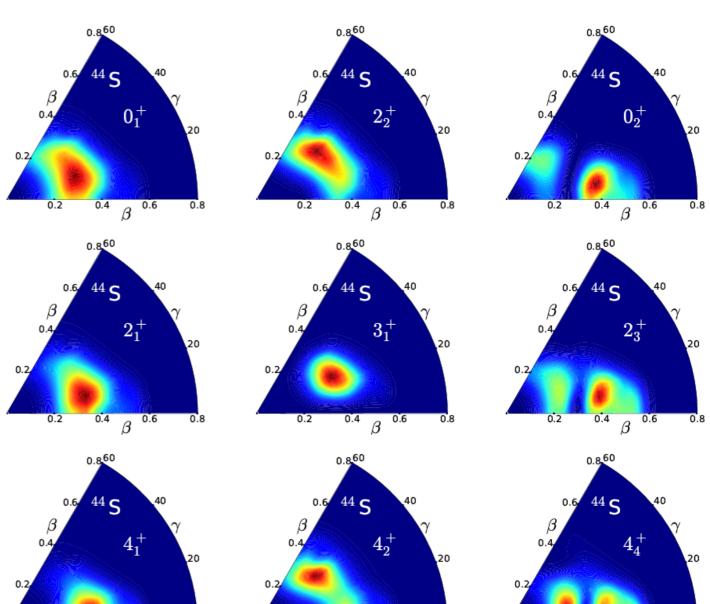
Coexisting shapes in N=28 isotones



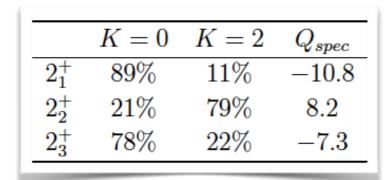




Probability density distributions:

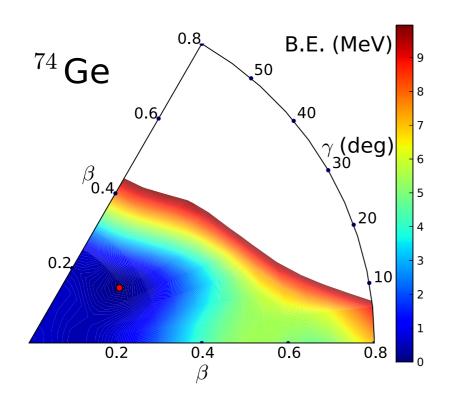


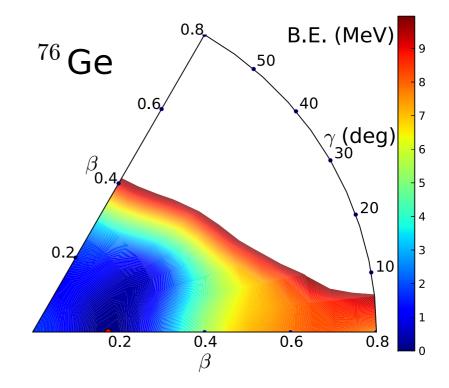
β

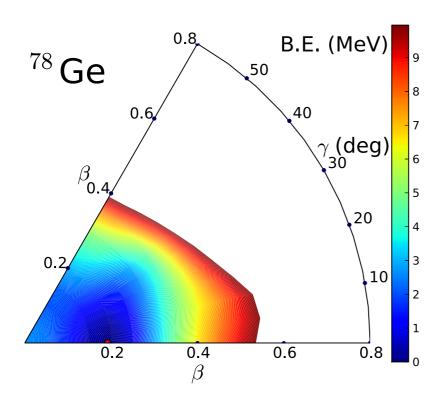


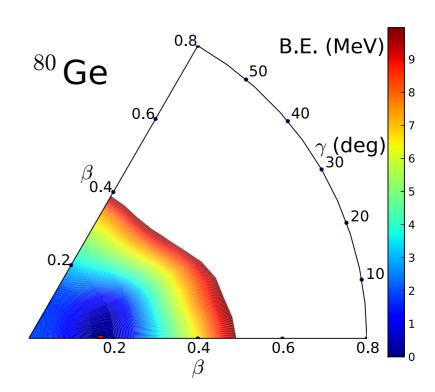
Shape evolution and triaxiality in germanium isotopes

Phys. Rev. C 89, 044325 (2014).

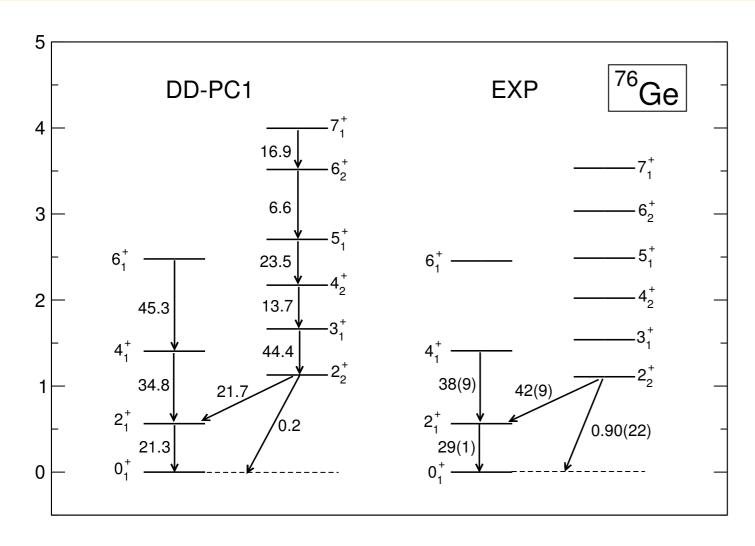




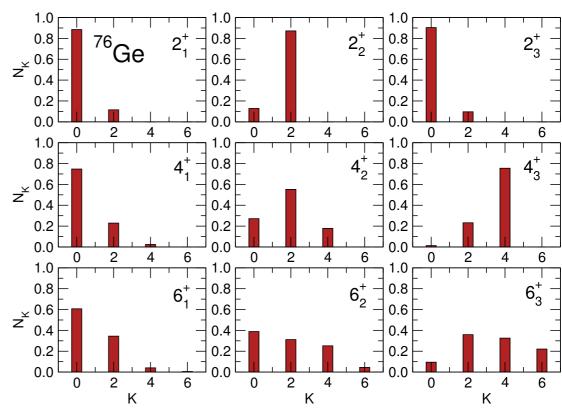




Quadrupole collective Hamiltonian based on the functional DD-PC1



Distribution of *K* components (projection of the angular momentum on the body-fixed symmetry axis) in the collective wave functions of the nucleus ⁷⁶Ge.

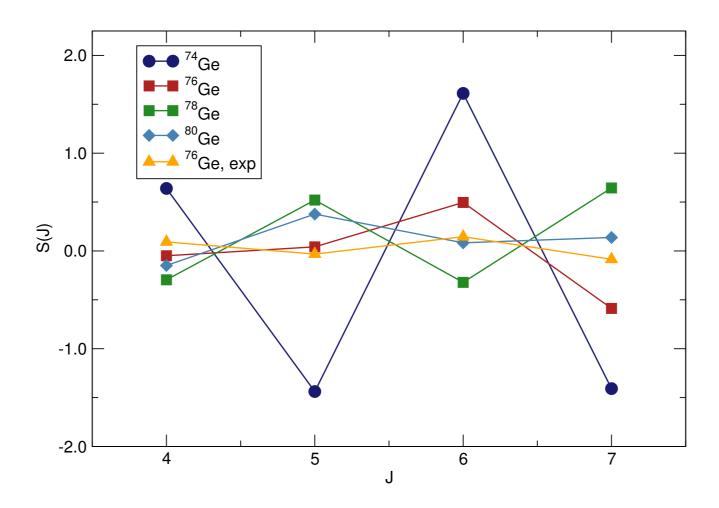


The level of K-mixing is reflected in the staggering in energy between odd- and even-spin states in the γ band:

$$S(J) = \frac{E[J_{\gamma}^{+}] - 2E[(J-1)_{\gamma}^{+}] + E[(J-2)_{\gamma}^{+}]}{E[2_{1}^{+}]}$$

Deformed γ -soft potential \Rightarrow S(J) oscillates between negative values for even-spin states and positive values for odd-spin states.

 γ -rigid triaxial potential \Rightarrow S(J) oscillates between positive values for even-spin states and negative values for odd-spin states.

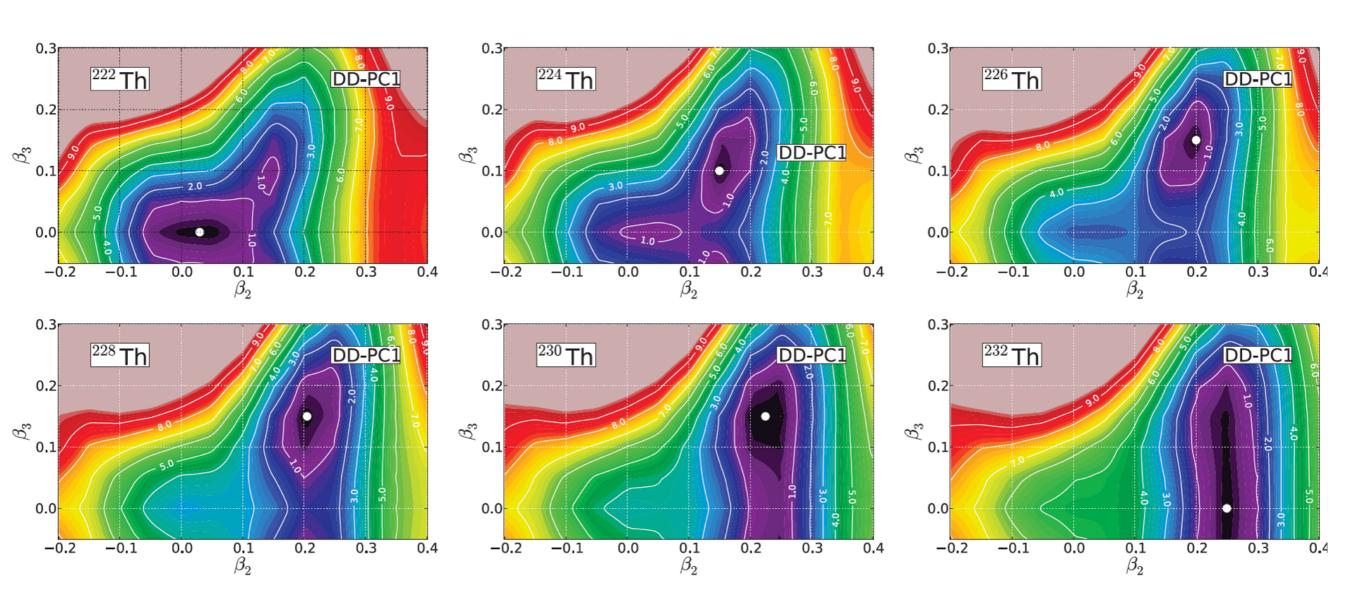


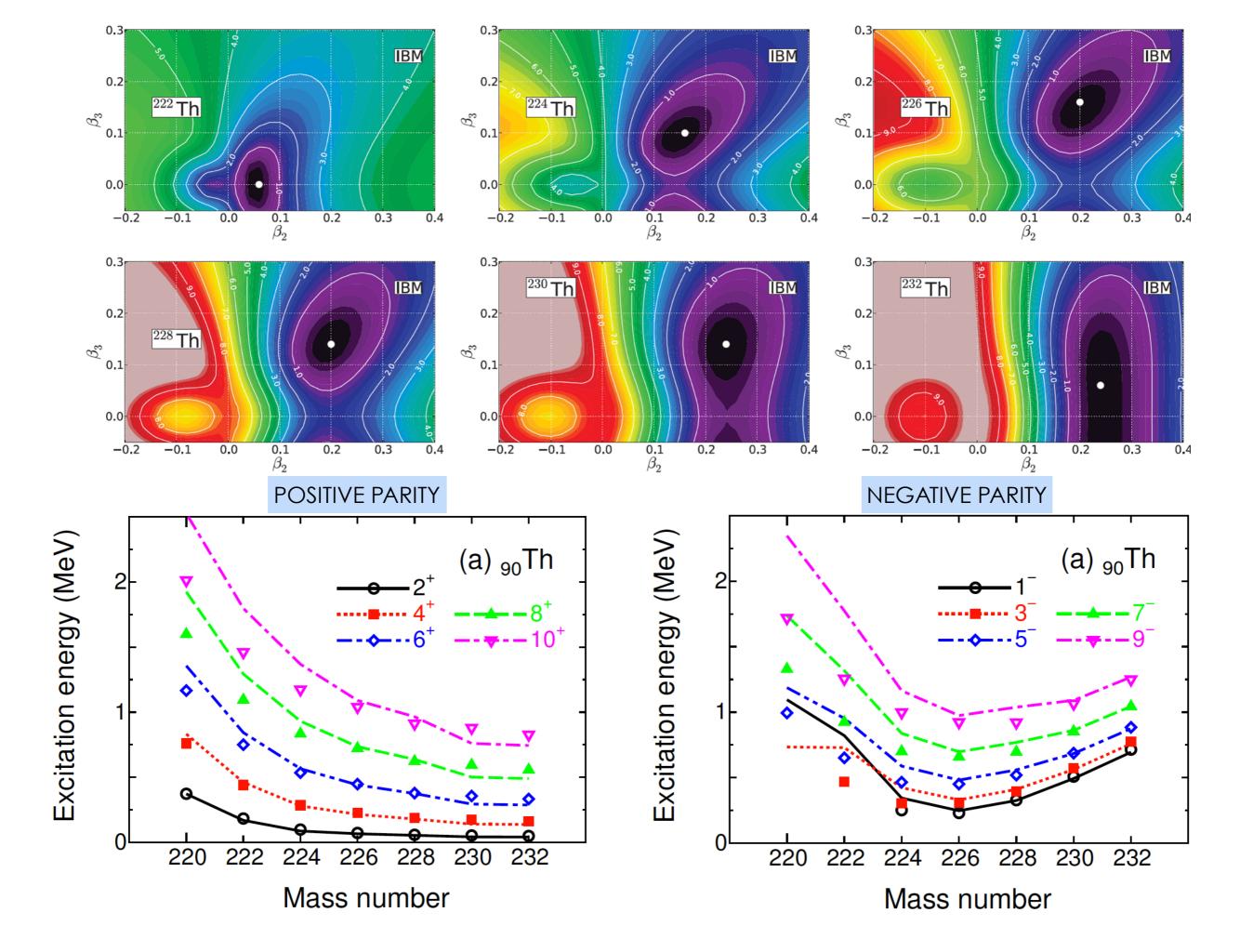
The mean-field potential of ⁷⁶Ge is γ soft. The inclusion of collective correlations (symmetry restoration and quantum fluctuations) drives the nucleus toward triaxiality, but not strong enough to stabilize a $\gamma \approx 30^{\circ}$ shape.

Octupole shape-phase transitions in light actinides

Phys. Rev. C 89, 024312 (2014).

Axially symmetric deformation energy surfaces of $^{222-232}$ Th in the (β_2,β_3) plane:





Extrapolation to SHE

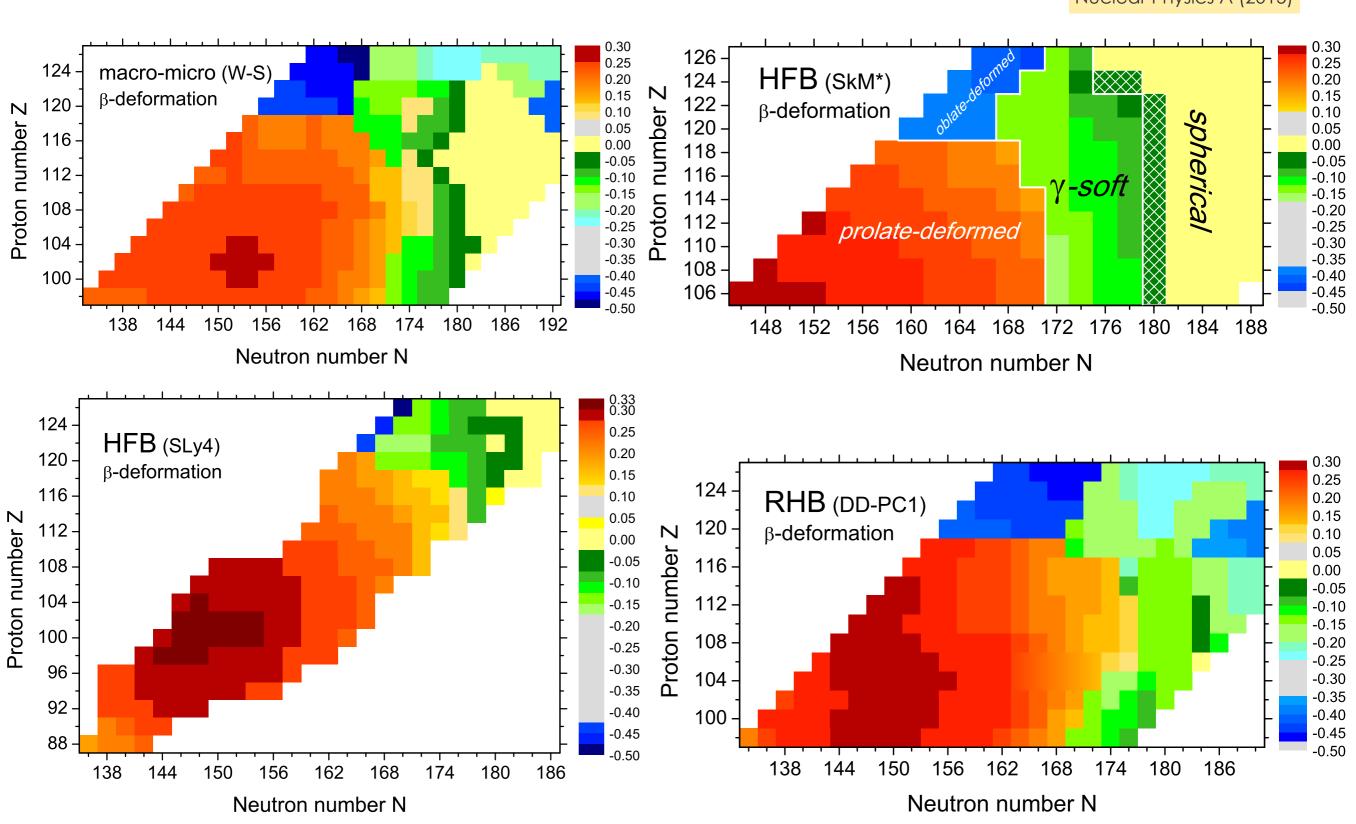
EDFs and the corresponding structure models are applied to a region far from those in which their parameters are determined by data — large uncertainty in model predictions?

Much higher density of single-particle states close to the Fermi energy \multimap details of the evolution of deformed shells with nucleon number will have more pronounced effects on energy gaps, separation energies, Q_{α} -values, band-heads in odd-A nuclei, K-isomers ...

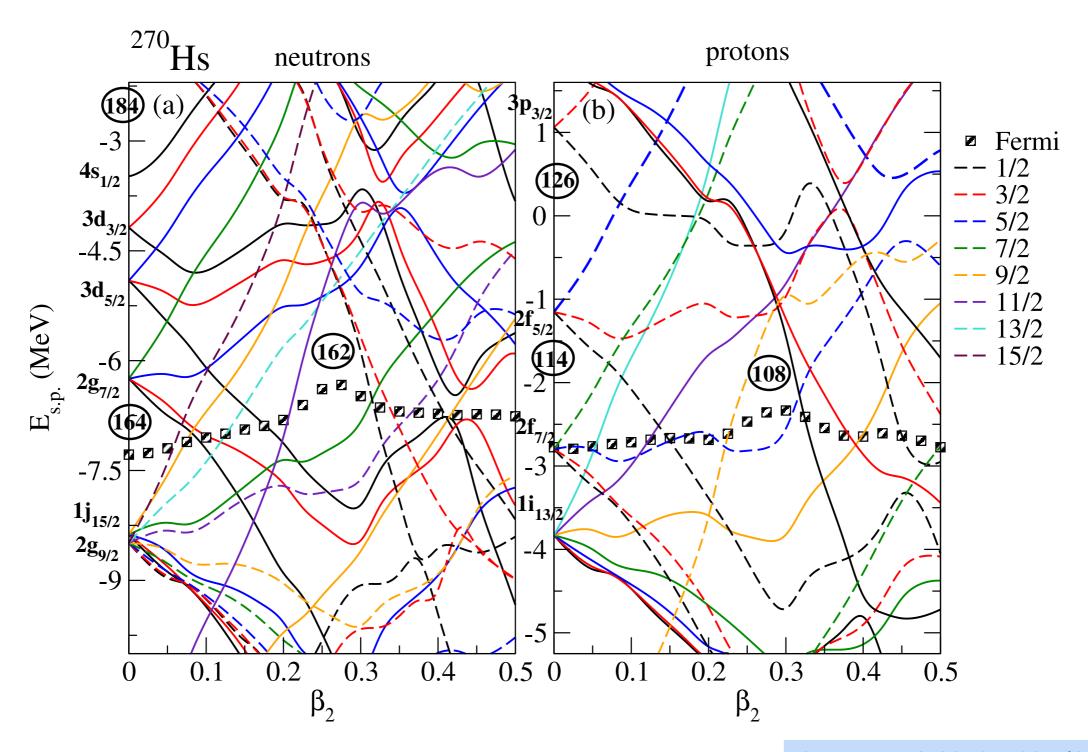
Much stronger competition between the attractive short-range nuclear interaction and the long-range electrostatic repulsion pronounced effects on the Coulomb, surface and isovector energies! Fast shape transitions! Exotic shapes!

Shape transitions in superheavy nuclei

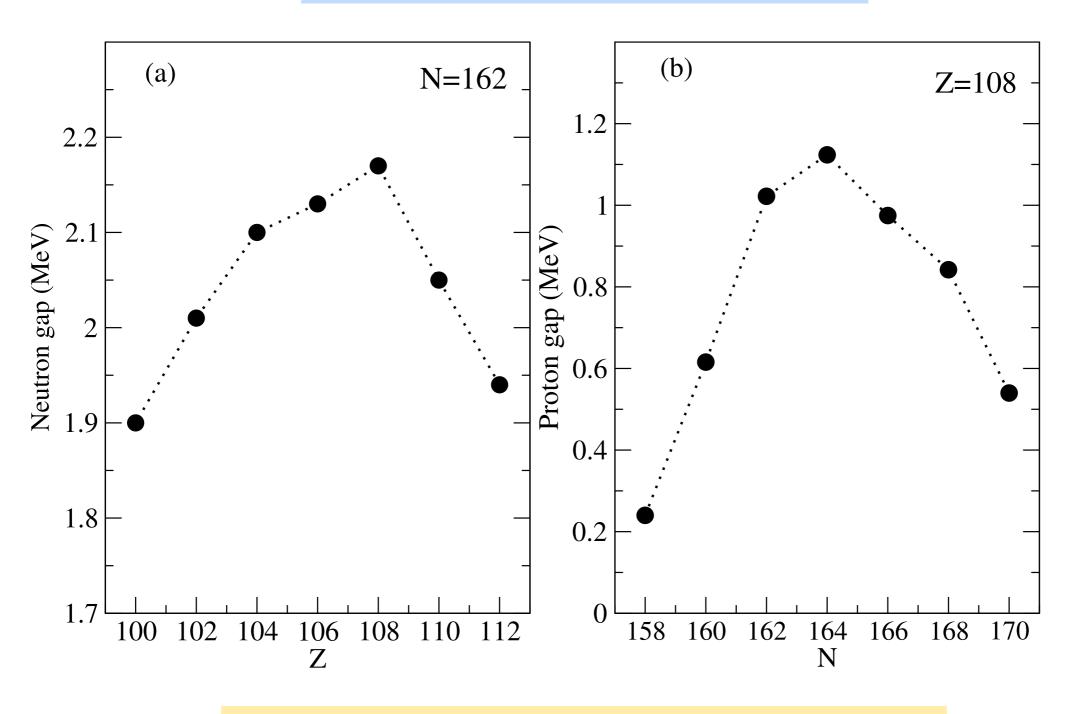
Nuclear Physics A (2015)



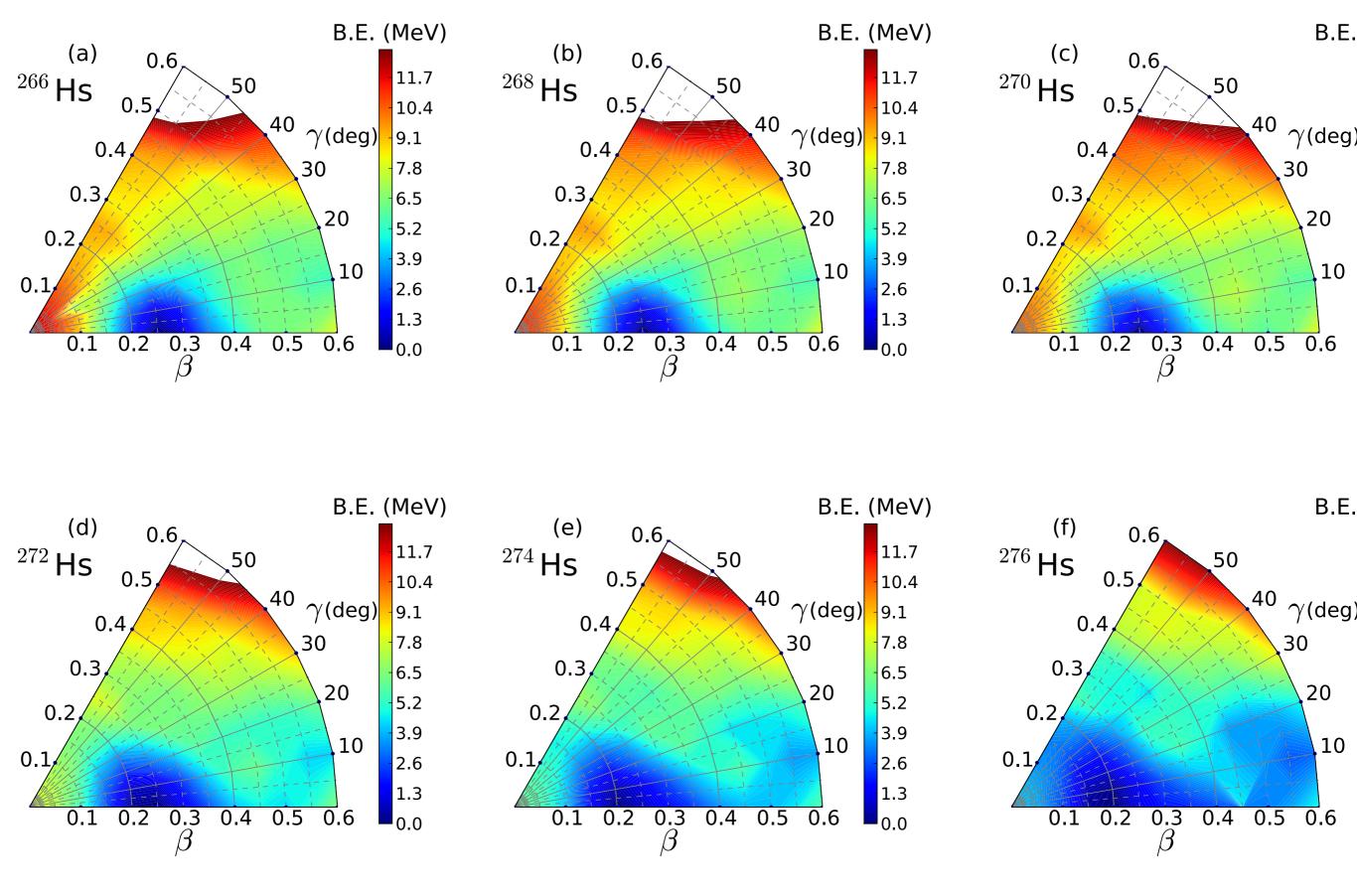
Energy gaps are small. Shape stabilisation depends on how fast the shell structures vary with deformation!



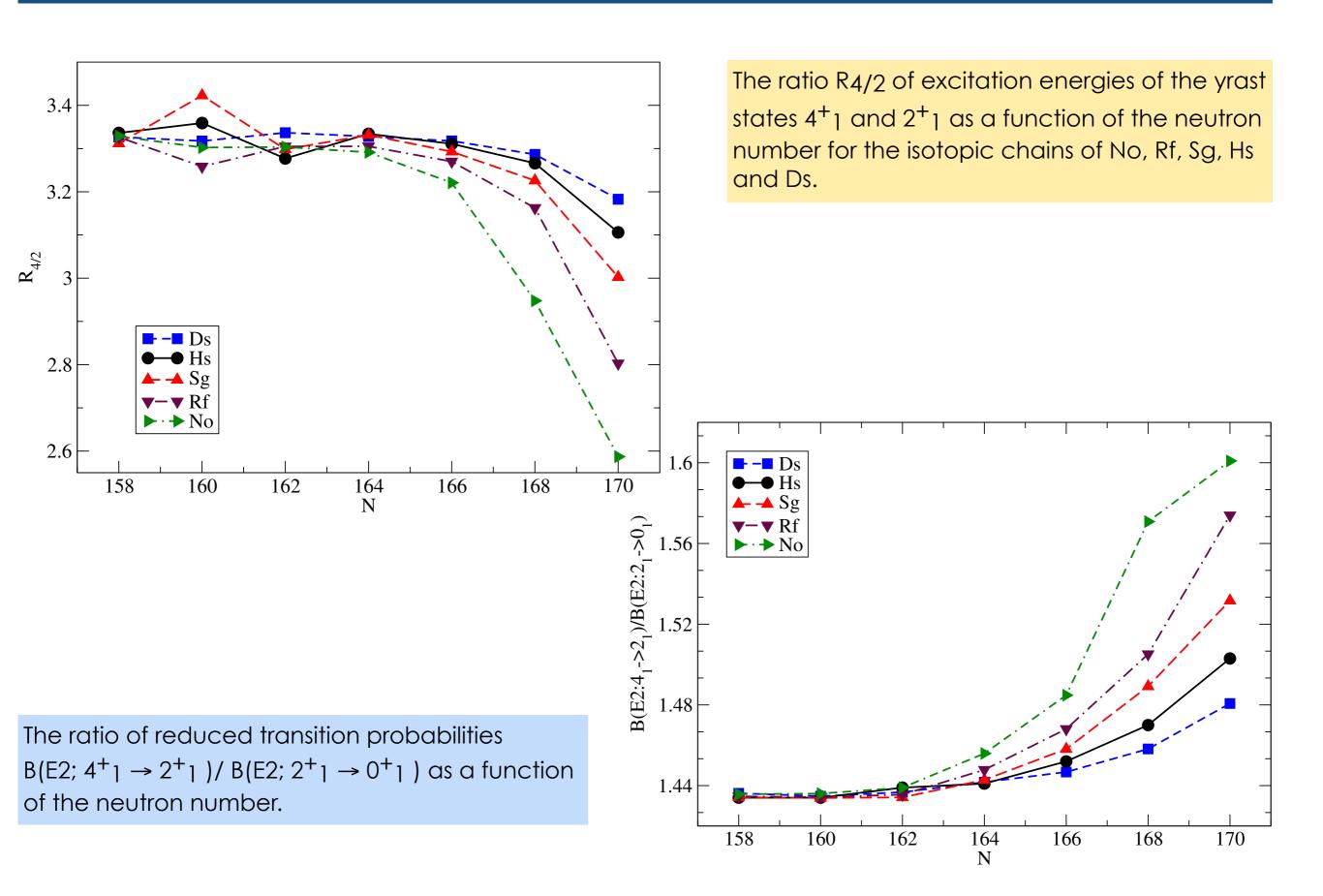
Neutron and proton shell gaps



²⁷⁰Hs → deformed "doubly magic" nucleus



Collective states



Nuclear Energy Density Functional Framework

 \checkmark ...description of universal collective phenomena that reflect the organisation of nucleonic matter in finite nuclei and the underlying inter-nucleon forces \rightarrow universal theory framework that can be applied to different mass regions.

 \checkmark NEDFs provide an economic, global and accurate microscopic approach to nuclear structure that can be extended from relatively light systems to superheavy nuclei, and from the valley of β-stability to the particle drip-lines.

✓ NEDF-based structure models that take into account collective correlations → microscopic description of low-energy observables: excitation spectra, transition rates, changes in masses, isotope and isomer shifts, related to shell evolution with nuclear deformation, angular momentum, temperature and number of nucleons.