

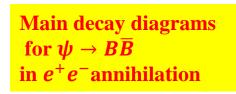
Baryon Spectroscopy at BESIII

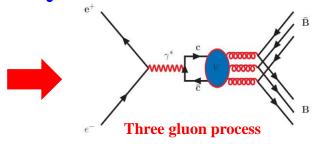
Xiongfei Wang
(on the behalf of BESIII collaboration)
Tsinghua University

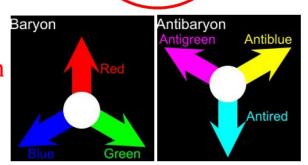
2015 European Nuclear Physics Conference Aug. 31-Sep. 4, University of Groningen/KVI-CART

Outline

- **■** Introduction
- Recent results on baryon spectroscopy
 - Measurement of $\chi_{cI} \rightarrow B\bar{B}$
 - Observation of $\eta_c \to B\bar{B}$
 - Observation of $\Lambda^*/\Sigma^*/N^*$
 - Observation of $\Xi(1690)^{-}/\Xi(1820)^{-}$
 - Study of Λ_c^+ decays
 - Study of Λ_c decays

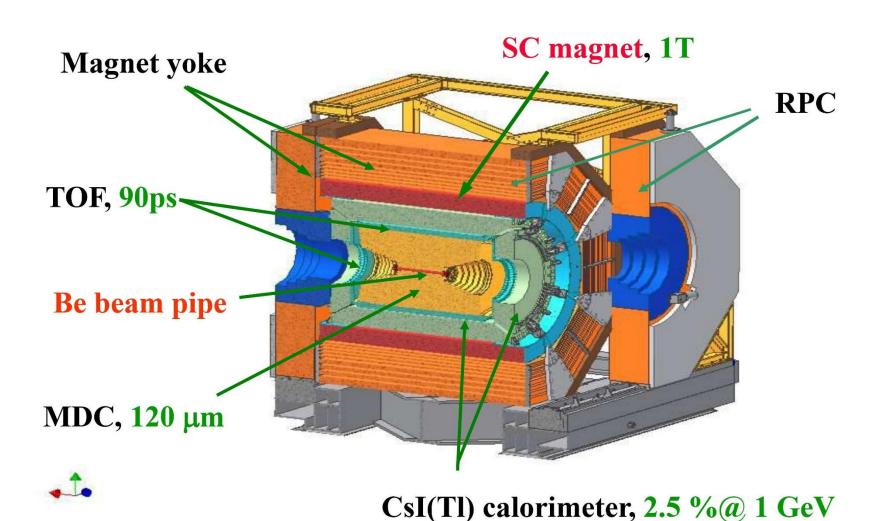

 Study of the decay $\Lambda_c^+ \to \Lambda e^+ \nu_e$


Preliminary

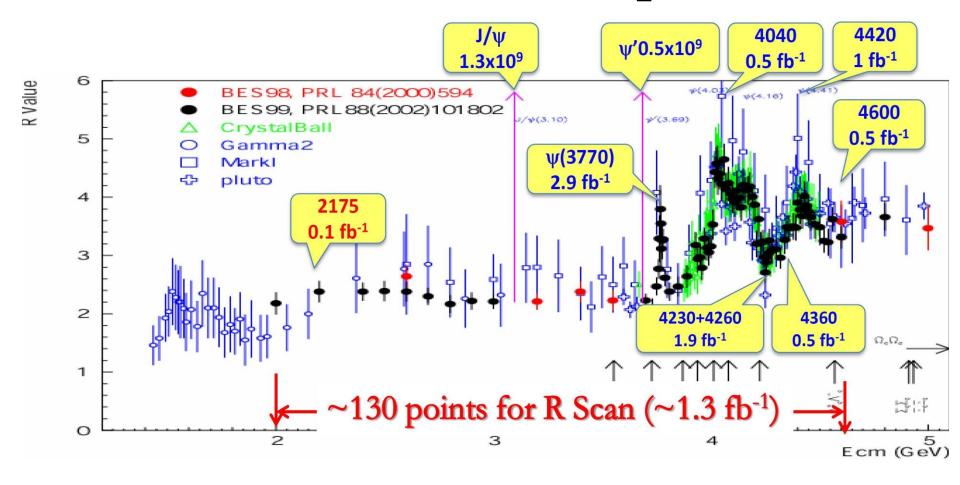

■ Summary

Introduction

- The established baryons are described by 3-quark configuration with the zero total color charge.
- An important field for understanding the structure of hadron.
- NR quark model:
 - ✓ Successfully interpreted the excited baryons
 - ✓ Provided an explicit classification for light baryon in terms of group symmetry
 - ✓ Predicted more excited baryon states
- The baryon decays of charmonium can provide a favorable test of pQCD and baryonic properties.



Beijing Electron Positron Collider-II



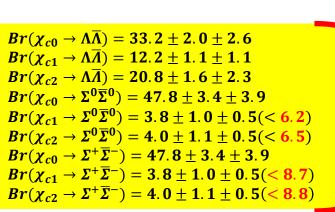
Beijing Spectrometer-III Detector

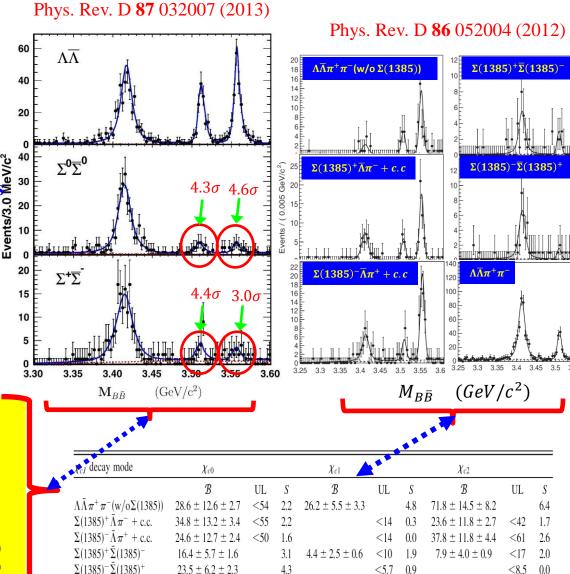
BESIII Data Samples

World largest data samples of J/ψ , $\psi(2S)$, $\psi(3770)$, etc., produced directly from e^+e^- collision.

Outline

■ Recent results on baryon spectroscopy


- Measurement of $\chi_{cI} \rightarrow BB$
- Observation of $\eta_c \to B\bar{B}$
- Observation of $\Lambda^*/\Sigma^*/N^*$
- Observation of $\Xi(1690)^{-}/\Xi(1820)^{-}$
- Study of Λ_c^+ decays
- Study of Λ_c decays


 Study of the decay $\Lambda_c^+ \to \Lambda e^+ \nu_e$ Preliminary

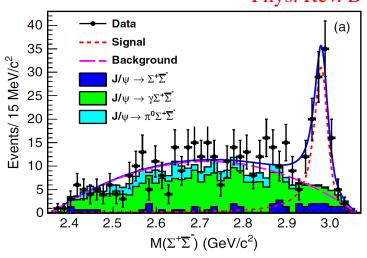
Measurement of $\chi_{cl} \rightarrow BB$

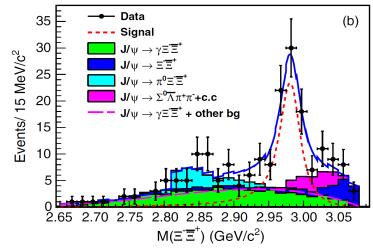
Data sample: $106 \times 10^6 \ \psi(2S)$

- Test the pQCD:
 - **Test COM model**
 - **Test helicity selection rule**
 - Enrich the experimental evidences of baryonic decays Study the χ_{cJ} meson properties **✓** Enrich the experimental
- **Branching fractions are** consistent with the previous published results

>10 31.1 \pm 3.4 \pm 3.9

>10 137.0 \pm 7.6 \pm 15.7


>10


 $119.0 \pm 6.4 \pm 11.4$

Observation of $\eta_c \to B\overline{B}$

Data sample: 225.3 \times 10⁶ J/ψ

Phys. Rev. D 87 012003 (2013)

$$\mathcal{B}(J/\psi \to \gamma \eta_c \to \gamma \Sigma^+ \bar{\Sigma}^-)$$

$$= (3.60 \pm 0.48 \pm 0.31) \times 10^{-5},$$

$$\mathcal{B}(J/\psi \to \gamma \eta_c \to \gamma \Xi^- \bar{\Xi}^+)$$

$$F(m) = \sigma_{\text{res}} \otimes (\varepsilon(m) \times E_{\gamma}^{3} \times \text{damping}(E_{\gamma}) \times \text{BW}(m)) + \text{BKG}(m),$$

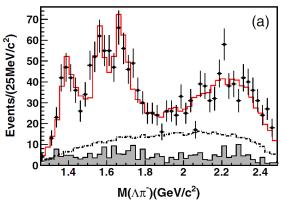
$$\mathcal{B}(\eta_c \to \Sigma^+ \bar{\Sigma}^-) = (2.11 \pm 0.28 \pm 0.18 \pm 0.50) \times 10^{-3} \\
= (1.51 \pm 0.27 \pm 0.14) \times 10^{-5}. \qquad \mathcal{B}(\eta_c \to \Xi^- \bar{\Xi}^+) = (0.89 \pm 0.16 \pm 0.08 \pm 0.21) \times 10^{-3}$$

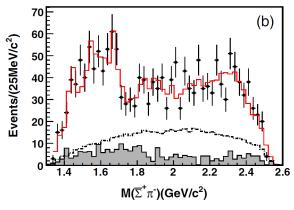
The measurements provide more experimental information on the study of the η_c decay!

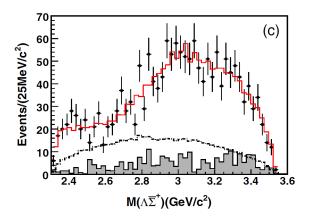
Observation of Λ^* and Σ^* in $\psi(2S) \to \Lambda \overline{\Sigma}^+ \pi^-$

Data sample: $106 \times 10^6 \ \psi(2S)$

Phys. Rev. D 88, 112007 (2013)

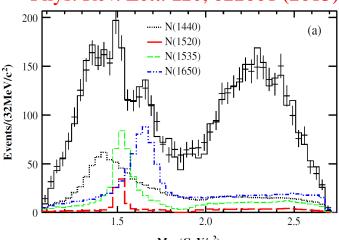

> Branching fractions are measured for the first time.

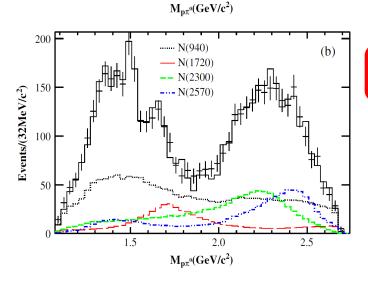

$$\mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^{+} \pi^{-} + \text{c.c.})$$


$$= (1.40 \pm 0.03 \pm 0.13) \times 10^{-4},$$

$$\mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^{-} \pi^{+} + \text{c.c.})$$

$$= (1.54 \pm 0.04 \pm 0.13) \times 10^{-4},$$




Excited strange baryons around 1.5 to 1.7 GeV/c^2 are observed.

PWA of $\psi(2S) \rightarrow p\overline{p} \pi^0$

Data sample: $106 \times 10^6 \ \psi(2S)$

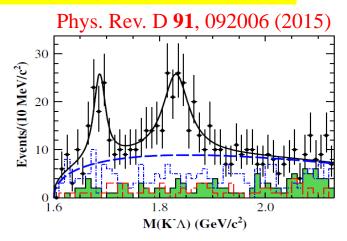
Phys. Rev. Lett. 110, 022001 (2013)

■ 2-body decay:

$$\checkmark \psi(2S) \rightarrow X\pi^0, X \rightarrow p\bar{p},$$

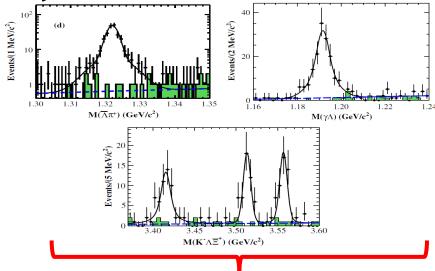
$$\checkmark \psi(2S) \rightarrow pN^*, N^* \rightarrow \bar{p}\pi^0 + c.c..$$

■ Isospin conservation:


✓ Suppress Δ resonance

Resonance	$M(\text{MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$	ΔS	$\Delta N_{ m dof}$	Sig.
N(1440)	1390^{+11+21}_{-21-30}	$340^{+46+70}_{-40-156}$	72.5	4	11.5σ
N(1520)	1510^{+3+11}_{-7-9}	115^{+20+0}_{-15-40}	19.8	6	5.0σ
N(1535)	1535^{+9+15}_{-8-22}	120^{+20+0}_{-20-42}	49.4	4	9.3σ
N(1650)	1650^{+5+11}_{-5-30}	150^{+21+14}_{-22-50}	82.1	4	12.2σ
N(1720)	1700^{+30+32}_{-28-35}	$450^{+109}_{-94}{}^{+149}_{-44}$	55.6	6	9.6σ
N(2300)	$2300^{+40+109}_{-30-0}$	$340^{+30+110}_{-30-58}$	120.7	4	15.0σ
N(2570)	$2570^{+19}_{-10}{}^{+34}_{-10}$	250^{+14+69}_{-24-21}	78.9	6	11.7σ

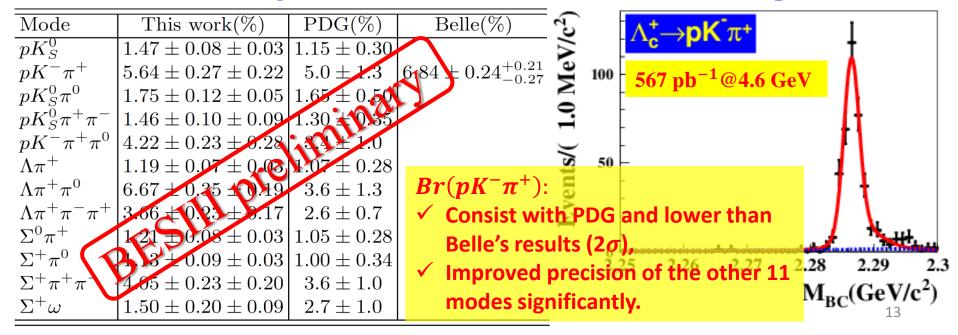
- **2** new N^* s are significant $(J^P = \frac{1}{2}^+, \frac{5}{2}^-)$
- First 5 well-known are also measured with higher precision.


Observation of $\Xi(1690)^-/\Xi(1820)^$ in $\psi(2S) \to K\Lambda\Xi$

Data sample: $106 imes 10^6 \ \psi(2S)$

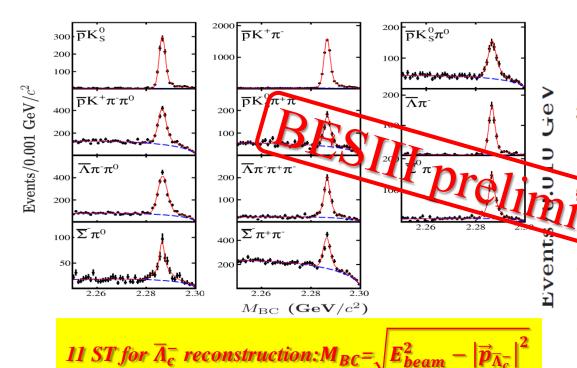
- Two hyperons $\Xi(1690)/\Xi(1820)$ are observed with significances of 4.9σ and 6.2σ in $\psi(2S) \to K^-\Lambda \bar{\Xi}^+ + c.c.$
- Resonance parameters consist with PDG

	Ξ(1690)-	Ξ(1820)-
$M(\text{MeV}/c^2)$	$1687.7 \pm 3.8 \pm 1.0$	$1826.7 \pm 5.5 \pm 1.6$
$\Gamma(MeV)$	$27.1 \pm 10.0 \pm 2.7$	$54.4 \pm 15.7 \pm 4.2$
Event yields	74.4 ± 21.2	136.2 ± 33.4
Significance(σ)	4.9	6.2
Efficiency(%)	32.8	26.1
$\mathcal{B}(10^{-6})$	$5.21 \pm 1.48 \pm 0.57$	$12.03 \pm 2.94 \pm 1.22$
$M_{\rm PDG}({\rm MeV}/c^2)$	1690 ± 10	1823 ± 5
$\Gamma_{PDG}(MeV)$	< 30	24^{+15}_{-10}



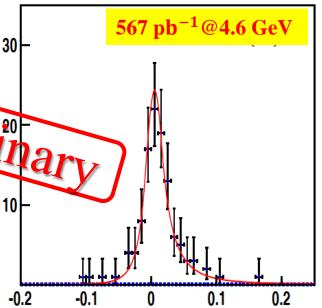
■ The branching fractions are measured for the first time!

Decay	Branching fraction
$\psi(3686) \to K^-\Lambda \bar{\Xi}^+$	$(3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$
$\psi(3686) \to \Xi(1690)^{-}\bar{\Xi}^{+},$	$(5.21 \pm 1.48 \pm 0.57) \times 10^{-6}$
$\Xi(1690)^- \rightarrow K^-\Lambda$	
$\psi(3686) \to \Xi(1820)^{-\bar{\Xi}^+},$	$(12.03 \pm 2.94 \pm 1.22) \times 10^{-6}$
$\Xi(1820)^- \to K^- \Lambda$	(2.67 + 0.22 + 0.20) 10.5
$\psi(3686) \to K^- \Sigma^0 \bar{\Xi}^+$	$(3.67 \pm 0.33 \pm 0.28) \times 10^{-5}$
$\psi(3686) \to \gamma \chi_{c0}, \chi_{c0} \to K^- \Lambda \bar{\Xi}^+$	$(1.90 \pm 0.30 \pm 0.16) \times 10^{-5}$
$\psi(3686) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow K^- \Lambda \bar{\Xi}^+$	$(1.32 \pm 0.20 \pm 0.12) \times 10^{-5}$
$\psi(3686) \to \underline{\gamma}\chi_{c2}, \chi_{c2} \to K^-\Lambda \Xi^+$	$(1.68 \pm 0.26 \pm 0.15) \times 10^{-5}$
$\chi_{c0} \to K^- \Lambda \Xi^+$	$(1.96 \pm 0.31 \pm 0.16) \times 10^{-4}$
$\chi_{c1} \to K^- \Lambda \bar{\Xi}^+$	$(1.43 \pm 0.22 \pm 0.12) \times 10^{-4}$
$\chi_{c2} \to K^- \Lambda \bar{\Xi}^+$	$(1.93 \pm 0.30 \pm 0.15) \times 10^{-4}$


Measurement of absolute BF for charmed baryon (Λ_c^+) decay

- Absolute BFs of Λ_c^+ decays suffer from large uncertainties since its discovery 30 years ago.
- **■** Provide crucial information:
 - \triangleright Important input to Λ_b physics
 - > Open a window into the study of final state (strong) interactions
 - > Constrain fragmentation functions of charm and bottom quarks

Measurement of absolute BF for semi-leptonic decay of $\Lambda_c^+ \to \Lambda e^+ \nu_e$


- **■** Test the theoretical model
- Calibrate the LQCD calculations
- **■** Determine additionally CKM elements

$U_{miss} = E_{miss} - c |\overrightarrow{p}_{miss}|$

$$egin{aligned} E_{miss} &= E_{beam} - E_{\Lambda} - E_{e^+} \ ec{p}_{miss} &= ec{p}_{\Lambda_c^+} - ec{p}_{\Lambda} - ec{p}_{e^+} \end{aligned}$$

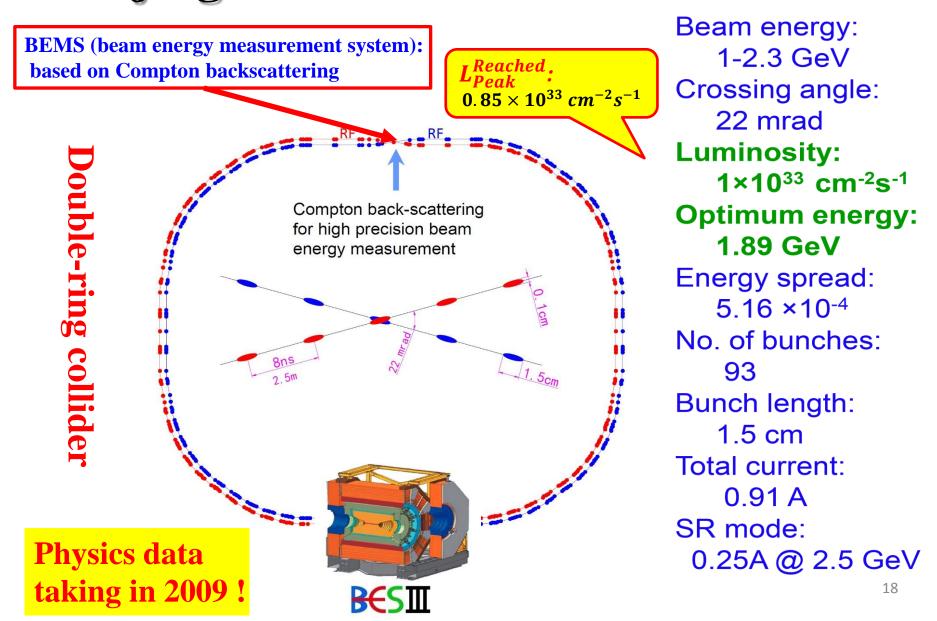
$$ec{p}_{\Lambda_c^+} = -\hat{p}_{ ext{tag}} \sqrt{E_{ ext{beam}}^2 - m_{ar{\Lambda}_c^-}^2}$$

 $U_{\rm miss}$ (GeV)

$$Br(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38 \pm 0.20)\%$$

Summary

- BESIII has collected the world largest data samples at J/ψ , $\psi(2S)$, etc. .
- Many baryonic results are presented in charmonium decays.
- Precise BR measurements of charmed baryon (Λ_c^+) decays are presented with the data sample at Λ_c^+ -pair threshold (4.6 GeV).
- More results of baryon spectroscopies are on the way!


Thanks for your attention!

Backup

BESIII Collaboration

Beijing Electron Positron Collider-II

