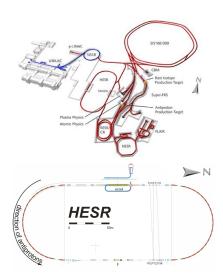
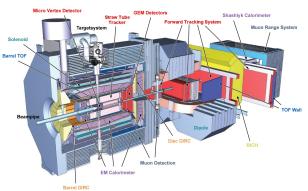
Malte Albrecht for the PANDA collaboration

Ruhr-Universität Bochum Institut für Experimentalphysik I

> Fii NPC 2015 August 31st 2015



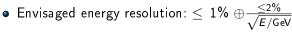
FAIR - Facility for Antiproton and Ion Research


- Accelerator facility at Darmstadt under construction
- Primary beams: protons up to $30 \, \text{GeV}/c$, heavy ion beams up to 35 GeV/u (U⁹²⁺)
- Secondary beams: antiprotons up to $15 \, \text{GeV}/c$, radioactive beams
- Antiprotons at FAIR:
 - Slow ramping synchrotron storage ring for internal target (HESR)
 - Momentum range: $1.5 15 \, \text{GeV}/c$
 - Stochastic and electron cooling

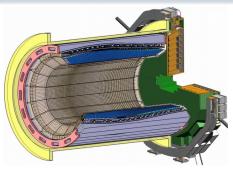
Mode	High	High
	Luminosity	Resolution
$\Delta p/p$	$pprox 10^{-4}$	$4 \cdot 10^{-5}$
$\overline{\mathcal{L}}$ [cm $^{-2}$ s $^{-1}$]	10 ³²	10 ³¹
Stored p	10 ¹¹	10 ¹⁰

The PANDA Detector

- ullet Target / forward spectrometer o almost 4π coverage
- Homogeneous crystal calorimeter & sampling calorimeter (forward)
- Flexible event selection: No hardware trigger! (Talk by M.Tiemens)

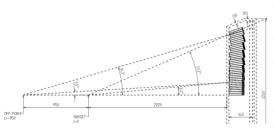


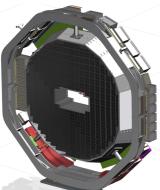
Diverse and unique (\overline{p}) physics program:

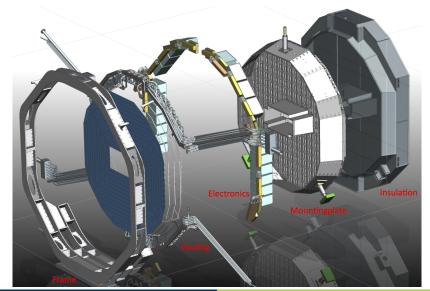

- Hadron spectroscopy
 - Light mesons
 Charmonium
 - Onen sharm
 - Open charm
 - Search for exotics
 - Baryons (double strange, charmed)
- Baryon anti-baryon production
- Mesons in nuclei
- Hypernuclei
- Proton structure

The PANDA EMC

- EMC consists of barrel part and two endcaps
- Scintillation material: Lead tungstate (PbWO₄)
- 15552 crystals (200x25x25 mm³; Length corresponds to $\approx 22 \cdot X_0$)
- Time resolution: < 2 ns

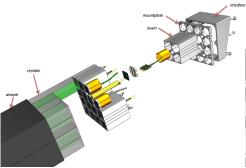


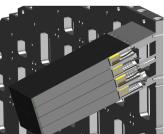

- Cluster threshold: 10 MeV
- Coverage: 98% of 4π
- Operating at -25 $^{\circ}$ C \rightarrow 4 times higher light output compared to +25 $^{\circ}$ C



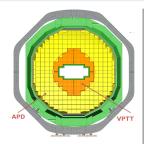
The forward endcap of the EMC

- 3856 PbWO₄ crystals
- Crystals are read out with Vacuum Photo Tetrodes (VPTTs) and Avalanche Photo Diodes (APDs)
- Angular coverage: $5^{\circ} < \theta < 23.6^{\circ}$
- Magnetic field of up to 1.2 T
- Off-pointing geometry

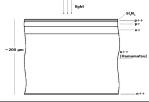




Crystal Subunits


- 16 crystals are grouped into one subunit
- Each crystal is wrapped in DF2000MA reflective foil (3M)
- Ultrathin temperature sensors ($d \le 150\,\mu\text{m}$) are placed in between the crystals
- Mechanical support structure: Carbon fibre alveole and aluminium parts

Photodetectors


VPTT (Hamamatsu)

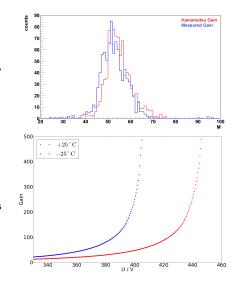
L 2. Dynode Anode Mesh

APD (Hamamatsu)

Quantum eff.
Active area
Gain
Dark current (Anode)
Capacity

pprox 23% 200 mm^2 typ. 50 $\leq 1 \text{ nA}$ pprox 22 pF

pprox 80% $6.8 \times 14 = 95.2 \, \text{mm}^2$ 200 $1 \, \text{pA} - \text{max}. 20 \, \text{nA}$


່ ≈ 270 pF

VPTTs:

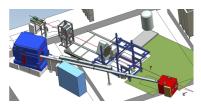
- Anode and cathode current for illumination with DC-light is measured, to verify gain given by Hamamatsu
- ightarrow All 900 VPTTs are delivered and screened! (Mean gain: $\overline{M} \approx 53\,\text{@}750\,\text{V}$)

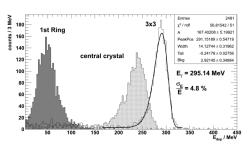
APDs:

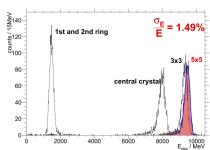
- Gain of APDs is strongly temperature dependent
- Matching of APDs necessary to use common high voltage
- → Measure response curve of APDs at different temperatures
- Slope of the response curve at Gain=200, -25 °C: Gain changes by 15 per Volt!

The Forward Endcap Prototype

- Subsection of forward endcap comprised of 216 crystals
- Equipped with different types of photosensors
- ightarrow Tests of mechanical components, cooling, readout electronics, slow control
- → Determination of minimal energy threshold, energy resolution, spatial resolution and rate stability of photosensors

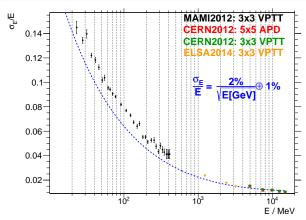



	Beam	E_{Beam}	Specialties
	particles	or p_{Beam}	
CERN/SPS	e^+	10, 15 GeV / c	max. PANDA energy
	μ^+	150 GeV / c	dep. energy $pprox$ 230 MeV
ELSA/Bonn	Tagged γ	1, 2.1, 3.1 GeV	Rates up to $2 \cdot 10^6 \mathrm{s}^{-1}$
MAMI/Mainz	Tagged γ	20 – 415 MeV	excellent beam
			energy resolution
CERN/SPS	e ⁻	5 – 15 GeV / c	Fibre / Si-strip
	π^+, K^+, \overline{p}	15, 50 GeV / c	TrackingStation
ELSA/Bonn	e ⁻	1.25, 2.4, 3.2 GeV	2 final subunits tested



Prototype ○●○○○

Energy Resolution

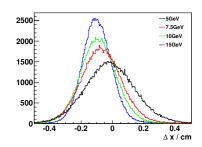


- Tagged photons (MAMI beamtime)
- $E_{\gamma} = 295.14 \, \text{MeV}$
- Data from 3 × 3 crystal matrix equipped with VPTTs

- 10 GeV positrons (CERN/SPS beamtime)
- Data from 5 × 5 crystal matrix equipped with VPTTs / VPTs

Energy Resolution - Summary

- Blue: Envisaged resolution (TDR)
- High energies: TDR values can be reached
- Low energies: small deviations → could be improved with final design of readout electronics (shaper + ADC boards)


Position Resolution

- Spatial resolution: Difference between point of impact calculated from energy deposition and tracking detectors (Δx)
- Resolution has been determined for 5 15 GeV electrons
- Distribution is shifted with increasing energy due to non-zero angle between beam axis and crystals
- TDR requirement: ≤ 3.5 mm (for forward endcap)
 → has been achieved!

Achieved resolution:

- 5 GeV/c: $\sigma_x = 1.6$ mm
- 7.5 GeV/c: $\sigma_x = 1.3$ mm
- 10 GeV/c: $\sigma_{x} = 1.1$ mm
- 15 GeV/c: $\sigma_{x} = 0.9 \, \text{mm}$

(Work by: C.Hammann, U Bonn)

Summary

- Design of mechanical components finished, production started
- → Backplate and support frame are delivered and assembled!
 - Delivery and screening of VPTTs finished
 - Final gain matching of readout chain in progress
 - Mass production of subunits will begin in the next months

Thank you for your attention!

