

EGAN 2014 Workshop

23-26 June 2014 Europe/Berlin timezone

AGATA Beyond 2016
Presentation from LNL

Presentation based on the letter from the LNL director, written in support to the Italian community request.

Angela Bracco

• The LNL laboratory in the next years

The construction of the SPES facility for radioactive beams beams and installations

- The letters of intent for physics at SPES
- Hosting AGATA 2019-2012

Conclusions

The SPES Project @ LNL a multi-user project

The SPES Project @ LNL

a multi-user project

ISOL BEAM FACILITY

8kW Direct Target: UCx 10¹³ fission s⁻¹ *Primary Beam*: 200 μA, 70 MeV protons from a 2 exit ports Cyclotron *Re-accelerator*: ALPI Superconductive Linac E>10 AMeV for A=130

Applied Physics with proton and neutron beams

 $70 \text{ MeV} 450 \,\mu\text{A}$

Approved for construction by INFN First beams in 2017

 Selective Production of Exotic Species

 Optimized use of the two exits high current proton driver production of re-accelerated neutronrich exotic beams **10¹³ fission/s in-target production, and re-acceleration at 10*A MeV** (A=132)

Radioisotope production & Medical applications innovative radiopharmaceuticals (e.g. Sr-82, Cu- 64, Cu-67)

Fast neutron production & material applications: Atmospheric neutron spectra, QMN

Single Event Effect, neutron capture

SPES Facility Layout

Tunnel towar

CB. RFQ. ALP

- Accelerator system at underground level to match existing ALPI beam line
- **2 ISOL bunkers** for redundance and optimal operation

SPES building under construction

Cyclotron Schedule

The Contract with BEST Theratronics provides for:

- Cyclotron
- Two exit channels
- High power beam transport line (up to SPES target)

SPES: Targets and beams

Other target materials

Main fission (p-> ²³⁸U) fragments

	1 H			E	B ₄ C					0 - 0								2 He
	3 Li	4 Be	Al ₂ O ₃				LaCx				5 B	6 C	7 N	8 O	9 F	10 Ne		
	11 Na	12 Mg	ZrC					IaC			13 Al	14 Si	15 P	16 S	17 CI	18 Ar		
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 R∪	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra																
Lanthanides																		
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Te	66 Dy	67 Ho	68 Er	69 Tm	70 ҮЬ	71 Lu	
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

7 B	se*
10E	se*
21 N	la*
22 N	la*
22 N	lg*
23 №	lg*
24 A	\ *
25 A	\ *
26 A	\ *
29 F)*

The target materials we are developing for the SPES ISOL facility, will allow to produce a variety of beams both in the neutron-rich and the neutron-poor area

SPES beam intensities after the Ion Source (1⁺)

Energy from SPES Post-Accelerator as function of A/q

Preliminary results from alpi performances with 2 cavities as margin, Low Beta=5 MV/m, Medium Beta=4.3 MV/m, High Beta=5.5 MV/m

Reaction domains

SPES CYCLOTRON

2 weeks per shift

Beam preparation 2 days Beam on target 12 days

Beam on target \rightarrow 280 hours per shift

Each bunker will cool down for 14 days after target irradiation.

7 shifts for cyclotron maintainance

Expected Beam on target 9000 hours per year (final configuration with 2 ISOL targets):

≈4500 hours/year for
Nuclear Physics
≈4500 hours/year for
Applications

SPES Schedule January 2014

	2012	2013	2014	2015	2016	2017
Authorization to operate and safety	UCx 5μA	Full	UCx auth	orization		
ISOL Target-Ion Sources development						
ISOL Targets construction and installation						
Building Construction	Executive project	raw buildin constructior	g ı			
Cyclotron Construction &						
commissioning						
RFQ development and Alpi up-grade						
Design of RIB transport & selection						
(HRMS, Charge Breeder, Beam Cooler)						
Construction and Installation of RIBs						
transfer lines , CB and spectrometers						
Complete commissioning and first ovotic						

Letters of Intent For The SPES Project @ LNL

LOIs at ISOL Facilities

	SPES	SPIRAL2 Phase 2	HIE-ISOLDE
Decay Studies	4	20	Not Applicable
Elastic /Inelastic	2	4	3
COULEX	7	2	13
Transfer	8 (3HI)	7	16
Deep Inelastic/ MNTR	5	1	0
Fusion/Fission	11	3	2
New instrumentation	4	NA	5
Astrophysics	3	6	4

γ-ray Spectroscopy at SPES

~10 A·MeV, In most cases gammas emitted by the beam-like particle Doppler broadening limits resolution: tracking required

- Coulomb excitation reactions
- Striping/Pickup
 cluster tranfer/Inelastic reactions
- Fusion-evaporation reactions

Multi-nucleon transfer & DIC

Physics Reach-single particles

- In a first stage (5 μA p beam) (d,p) reaction to ⁷⁰Ni and ¹³⁵Sn
- In the final stage (200 μA p beam) (d,p) reaction to ⁷²Ni and ¹³⁷Sn.

Use also cluster transfer,

Promising technique (ISOLDE experiment)

Fig. 2. γ -rays detected in coincidence with α (top panel) and t (bottom panel) corresponding Y and Zr isote explained in the S. Bottoni, S. Leono et al. ISOLDE exp.

Multinucleon transfer reactions with neutron-rich beams

GRAZING code calculations

possibility to populate nuclei via pick-up and stripping of both neutrons and protons

probing (nn), (pp) and (np) correlations. Important for studies on pairing vibrations/rotations, nuclear superfluidity

production of neutron rich isotopes

Collective modes

Pygmy resonances through inelastic scattering at 10 MeV/A

- Dynamic dipole emission in fusion reactions with very large dipole moments in the entrance channel (large N-Z)
- Quenching of the GDR in hot nuclei: Isospin dependance of the liquid gas phase transition.

γ-ray for fusion evaporation

Fusion-evaporation reactions

- shapes- shape coexistance-deformations
- High spin states and order-chaos transition
- **Dynamical symmetries**

AGATA with:

Recoil Filter

→ Shortest half-lives, production rates << 1 min⁻¹

Hosting Agata at LNL

 An addendum of the AGATA@LNL host agreement is expected to be prepared in due time to commit the necessary involvement of human and financial resources.

 In this connection the past and successful experience with the AGATA demonstrator at LNL is very useful

Hosting Agata at LNL

Based on the submitted letters of intent at this stage

3 different set-ups are proposed:

1 - AGATA "stand alone" (2019) coupled to SPIDER (Coulomb excitation), Recoil Filter Detector (Fusion residues), TRACE (Transfer reactions) or NEDA (neutron detection), PARIS (gamma ray calorimeter) etc.

2 - AGATA coupled to the PRISMA spectrometer - (2020)

3- AGATA coupled to particle hodoscopes (2021)

END