Slowing down RIBs to coulomb barrier energies

Mario Cappellazzo

IKP Cologne

Agenda

- Concept idea
- Feasibility studies
- Ancillary detector developments
- Conclusion

Concept idea

- Exotic –short lived- nuclei produced with in-flight method at FAIR/SFRS have energies far above the Coulomb barrier
- Deceleration of these unique beams in thick degrader to 5-10 MeV/u
- High-spin physics:
 - Multi-step coulomb excitation
 - Transfer, Resonance, Fusion-evaporation
- Compared to other existing experiments with slow down beams, e.g. MSU or RIKEN, or isotope online method we have access to other energies and nuclei ->complementary

Concept idea -challenges & solutions

reducing background by tracking

Concept idea -challenges & solutions

- Angular broadening
- Energy straggling
- Reaction products from degrader

- Track particles before and after slowing down
- Measure X;Y; β (ToF) and Δ E;E
- reducing background by tracking

Feasibility studies -2008: 64Ni

- FRS detectors used for particle identification before degrader
- Beam Profile Monitors (Thin Foil Detectors) were used for X;Y;ToF measurement
- Active Target was used for ΔE measurement

Feasibility studies -2008: 64Ni

Angular spread becomes not neglible

 Distance between degrader and target relevant

SIMULATIONS

- Energy spread 9 Mev/u
- Creation of secondary fragments in the degrader
- Integrated background contribution in relevant energy gate is <1%

Feasibility studies -2008: 64Ni

- 80 % of the beam particles survived slowing down
- Energy spread after slowing down to 10 MeV/u is 8 MeV/u. The predicted energy spread is 9 MeV/u
- Contaminants due to the reactions in the degrader are of the order of 2%

POLONICA B; Vol.42 (2011), p.725-728

- April 2014: 2 shifts of 58 Ni @ 250 MeV/u
- Slowed down to 7 MeV/u in Al degrader
- Important detectors:
 - FRS scintillator 41
 - BPMs
 - Active silicon target (for energy calibration of the target)
 - AGATA
- Thick Au target

- High background counts and unwanted lines from (fast) neutrons $(n, n'\gamma)$
- Lines from elements of the setup can easily be seen: Al,Ge,Pb,Cu,Fe,...
- Lines from Au Target are not easily found because of a large Compton background (only Au X-rays)
- 58 Ni Lines are also not easily found (maybe due to Doppler broadening)

• A nickel 2+ 1454 keV peak becomes visible after setting a time gate and subtraction of two background time cuts

AGATAea_array_value[] {{ {Trigger_value=-7}&&(AGATAta_array_value[]>870)&&(AGATAta_array_value]]<950)}}

Changes after first test shift:

- Earlier degradation for background reduction
 S₄ + Al stack after MUSIC₁
- Enhanced shielding
 Plastic wall

Ancillary detector developments

- Beam Profile Monitors , e.g.thin foil detectors play for this type of experiment an important role
 - Providing good ToF resolution (down to 150 ps) and position information ->Doppler correction
 - Particle tracking and identification
- Ongoing development to bigger active area and better resolutions
 - 2008: 40x50mm²
 - 2010& 2012: 100x80mm²
 - 2014: 150mm diameter (in construction)

Ancillary detector developments

- Ongoing development in ∆E Detektor: Double Sided Silicon Strip Detectors (DSSSD) for fast timing
- cooled to -17°C
- 50×50 mm²
- $40\mu m$ thin
- Timing resolution of ~0.4 ns reached

From *P. Boutachkov, E. Gregor* et al. Fast Timing with DSSSD Detectors; GSI SCIENTIFIC REPORT 2012

Conclusion

- The experiment in 2008 showed that:
 - Slowing Down of a fast beam is possible without destroying the beam
 - >Beam parameters can be predicted and selected
- Until now we learned from the experiment in 2014:
 > High background component can be reduced by slowing down earlier
 - Additional shielding is necessary because of the fragmentations in the degrader
 - consistency checks for BPMs needed
 - ➤ Thin or active target for particle discrimination by E or ΔE essential for studies
 - Gamma detectors can stand the (particle) background from the slowing down

The Collaboration: HISPEC/SDB

<u>GSI group/TU Darmstadt</u>: P. Boutachkov, M.Górska, J.Gerl, H.Geissel, E. Gregor, I.Kojouharov, W.Koenig, C.Nociforo, W.Prokopowicz, H.Schaffner, H.Weick <u>JINR Dubna</u>: <u>N.Kondratiev</u>

<u>Saclay</u>: A.Drouart, A.Polacco

<u>Köln</u>: J.Jolie, F.Naqvi,^{*} G.Pascovici, M.Pfeiffer,^{*} M.Cappellazzo

<u>Sevilla group</u>: J.Gomez Camacho, M.Alvarez, J.M.Espino, I.Mukha, J.M.Quesada

LNL group: J.J.Valiente, A.Gadea

THANK YOU

•for your attention!

for financial support

 for the support from the HISPEC Slow Down Beam Collaboration and the IKP Cologne

150BPM

ia'd 🗜 🎽

2

Doppler Shift?

- Half life of 1454 state in 58Ni 0.5ps
- Coulomb Barrier at 289.6MeV
- Is a Doppler correction possible? No position on target, no β for particle in target during deceleration

